コード例 #1
0
ファイル: DataHelper.py プロジェクト: caomw/DeepSal
    def preprocessing(self, imgs, msks, sz=(48, 48), augx=0):

        print len(imgs)
        if augx > 0:
            print "augmenting train data ..."
            # augx = 2xnSample+1
            n_sample = np.int(augx / 2.0) - 1
            imH, imW = imgs[0].shape[0:2]
            borderH = np.int(imH * 0.2)
            borderW = np.int(imW * 0.2)
            w = imW - borderW
            h = imH - borderH
            x1s = np.random.randint(0, borderW, n_sample)
            y1s = np.random.randint(0, borderH, n_sample)
            imgs_crop = imgs
            msks_crop = msks
            for img, msk in zip(imgs, msks):
                imgs_crop += [imcrop(img, [x1, y1, w, h]) for x1, y1 in zip(x1s, y1s)]
                msks_crop += [imcrop(msk, [x1, y1, w, h]) for x1, y1 in zip(x1s, y1s)]
            print len(imgs_crop)
            imgs_flip = [pl.fliplr(im) for im in imgs_crop]
            msks_flip = [pl.fliplr(im) for im in msks_crop]
            imgs = imgs_crop + imgs_flip
            msks = msks_crop + msks_flip
            print len(imgs)

        imgs_rs = [imresize(im, sz, interp="bicubic") for im in imgs]
        imgs_norm = [imnormalize(im) for im in imgs_rs]
        msks_norm = [imresize(im, sz, interp="bicubic") for im in msks]
        imgs_final, msks_final = self.convert_data(imgs_norm, msks_norm)
        print len(imgs_final)
        return imgs_final, msks_final
コード例 #2
0
ファイル: DataHelper.py プロジェクト: caomw/DeepSal
    def _load_images_salmaps(self, datapath=None, imgext="bmp"):
        """ load preliminary data (images, segmentations, and salience maps) """

        if datapath is None:
            if sys.platform == "darwin":
                homedir = "/Users/rzhao/"
            else:
                homedir = "/home/rzhao/"

            datapath = homedir + "Dropbox/ongoing/reid_jrnl/salgt/data_viper/"

        filepath = datapath + "query/"
        imgfiles = sorted(glob(filepath + "*." + imgext))
        self.nPerson = len(imgfiles)
        imgs = [imread(im) for im in imgfiles]

        salfilepath = datapath + "labels.pkl"
        data = loadfile(salfilepath)
        segmsks, salmsks = data

        imgs = [imresize(im, size=(self.imH, self.imW)) for im in imgs]
        segmsks = [imresize(im, size=(self.imH, self.imW)) for im in segmsks]
        salmsks = [imresize(im, size=(self.imH, self.imW)) / 255.0 for im in salmsks]

        self.imgs = np.asarray(imgs)
        self.segmsks = np.asarray(segmsks)
        self.salmsks = np.asarray(salmsks)

        # load dense colorsift features
        labeled_imidx_path = "../data_viper/labeled_imidx.mat"
        tmp = loadfile(labeled_imidx_path)
        labeled_imidx = tmp["labeled_imidx"].flatten()
        feat_path = homedir + "Dropbox/ongoing/reid_jrnl/salgt/data_viper/features.mat"
        tmp = loadfile(feat_path)
        self.feats = tmp["features"].astype(np.float)[labeled_imidx]
コード例 #3
0
ファイル: DataHelper.py プロジェクト: caomw/DeepSal
    def _load_images_salmaps(self, datapath=None, imgext="bmp"):
        """ load preliminary data (images, segmentations, and salience maps) """

        if datapath is None:
            if sys.platform == "darwin":
                homedir = "/Users/rzhao/"
            else:
                homedir = "/home/rzhao/"

            datapath = homedir + "Dropbox/ongoing/reid_jrnl/salgt/data_viper/"

        filepath = datapath + "query/"
        imgfiles = sorted(glob(filepath + "*." + imgext))
        imgs = [imread(im) for im in imgfiles]

        salfilepath = datapath + "labels.pkl"
        data = loadfile(salfilepath)
        segmsks, salmsks = data

        imgs = [imresize(im, size=(segmsks[0].shape), interp="bicubic") for im in imgs]

        # imgs_norm = [imnormalize(im) for im in imgs]
        # return imgs, segmsks, salmsks
        self.imgs = imgs
        self.segmsks = segmsks
        self.salmsks = salmsks
コード例 #4
0
ファイル: saltest_feat.py プロジェクト: Robert0812/salgt
def main():
	''' pipeline for testing and evaluation '''
	# preset parameters
	save_path = '../data_viper/model_feat/'

	# load data
	# imL = 48
	bs = 100
	datafile_viper = '../data_viper/viper.pkl'
	viper = loadfile(datafile_viper)

	# load model
	modelfile_viper = '../data_viper/model_feat/model.pkl'
	model = loadfile(modelfile_viper)

	# evaluation and testing
	# test_x = viper.test_x.get_value(borrow=True)
	test_x = np.asarray(viper.test_feat)
	test_y = viper.test_y
	n_test = test_x.shape[0]
	test_ypred = model.predict(viper.test_feat)
	test_ypred = np.asarray(test_ypred).flatten()

	# test_ims = test_x.reshape((n_test, imL, imL, -1))

	# assign predicted scores to images
	h, w = viper.imgs[0].shape[:2]
	mh, mw = len(np.unique(viper.yy)), len(np.unique(viper.xx))
	msk0 = np.zeros(mh*mw).astype(np.uint8)
	msks = [msk0.copy() for im in viper.imgs]

	showlist = []
	for i in range(n_test):
		imgid = viper.test_imgids[i]
		patid = viper.test_ctrids[i]
		score = test_ypred[i]
		msks[imgid][patid] = score*255

	# resize predicted salience map to match image size
	msks_rs = [imresize(msk.reshape((mw, mh)).T, size=(h, w))/255. for msk in msks]

	# save salience map for comparison
	test_imids = np.asarray(np.unique(viper.test_imgids))
	salmap_gt = np.asarray(viper.salmsks) #np.asarray([viper.salmsks[imid] for imid in test_imids])
	salmap_pred = np.asarray(msks_rs) #np.asarray([msks_rs[imid]/255. for imid in test_imids])
	savefile(save_path+'salmaps_comparison.pkl', [test_imids, salmap_gt, salmap_pred])

	# quantize to show different test patches
	# kmeans = KMeans(init='k-means++', n_clusters=10, n_init=10)
	# kmeans.fit(test_ypred.reshape(n_test, 1))

	# # save to result folder
	# for i in range(10):
	# 	idx = kmeans.labels_== i
	# 	if any(idx): 
	# 		im = immontage(list(test_ims[idx])) 
	# 		imsave(save_path+'{}.jpg'.format(kmeans.cluster_centers_[i]), im)

	print 'testing finished'
コード例 #5
0
ファイル: unit_test.py プロジェクト: Robert0812/salgt
def test_knn():

	datafile_viper = '../data_viper/viper.pkl'
	viper = loadfile(datafile_viper)
	viper = downsample_data(viper)
	# from sklearn.neighbors import KNeighborsRegressor
	# model = KNeighborsRegressor(n_neighbors=5, weights='uniform', metric='euclidean')
	# model.fit(viper.train_feat, viper.train_y)
	from sklearn.neighbors import KDTree
	
	# divide into stripes
	nStripe = 10
	y_max = viper.yy.max()
	y_min = viper.yy.min()
	y_len = np.int((y_max - y_min)/10.)
	y_centers = np.round(np.linspace(y_min+y_len, y_max-y_len, nStripe))

	k = 5
	y_ctr = y_centers[k] 

	stripe_idx = np.where((viper.yy[viper.train_ctrids] >= y_ctr-y_len) & (viper.yy[viper.train_ctrids] < y_ctr+y_len))[0]
	
	model = KDTree(viper.train_feat[stripe_idx, :288], metric='euclidean')

	train_patset = viper.get_patchset('train')
	test_patset = viper.get_patchset('test')

	test_ids = np.where((viper.yy[viper.test_ctrids] >= y_ctr-y_len) & (viper.yy[viper.test_ctrids] < y_ctr+y_len))[0]
	np.random.shuffle(test_ids)
	for i in test_ids:

		get_testrect = lambda i: [viper.xx[viper.test_ctrids[i]] - viper.patL/2, 
								viper.yy[viper.test_ctrids[i]] - viper.patL/2,
								viper.patL, viper.patL]

		get_trainrect = lambda i: [viper.xx[viper.train_ctrids[i]] - viper.patL/2, 
								viper.yy[viper.train_ctrids[i]] - viper.patL/2,
								viper.patL, viper.patL]

		gray2color = lambda grayim: np.dstack((grayim, grayim, grayim))

		imlist = []
		patlist = []
		maplist = []
		patlist.append(imresize(test_patset[i], size=(100, 100)))
		imlist.append(drawrect(viper.imgs[viper.test_imgids[i]], get_testrect(i)))
		maplist.append(viper.salmsks[viper.test_imgids[i]])
		dist, ind = model.query(viper.test_feat[i, :288], k=30, return_distance=True)
		print viper.test_y[i]
		hist = np.histogram(viper.train_y[stripe_idx[ind[0]]])
		print hist[0]
		print hist[1]
		print dist
		for id in stripe_idx[ind[0]]:
			patlist.append(imresize(train_patset[id], size=(100, 100)))
			imlist.append(drawrect(viper.imgs[viper.train_imgids[id]], get_trainrect(id)))
			maplist.append(viper.salmsks[viper.train_imgids[id]])
		pats = immontage(patlist)
		imgs = immontage(imlist)
		maps = immontage(maplist)
		imsave('tmp1.jpg', pats)
		imsave('tmp2.jpg', imgs)
		imsave('tmp3.jpg', maps)

		raw_input()

	os.system('xdg-open tmp1.jpg')
コード例 #6
0
ファイル: salview.py プロジェクト: Robert0812/salgt
def print_labeling(data_path = None): 

	# if data_path is None:
	# 	newDialog = QDialog()
	# 	fpath = QFileDialog.getExistingDirectory(newDialog, "Select data directory", '../')
				
	# 	if len(fpath) == 0:
	# 		QMessageBox.warning(None, 'Warning!', 'Nothing loaded.')
	# 		return

	# 	data_path = str(fpath) + '/' # loaded path

	src_file = data_path + 'parts.pkl'
	usr_file = sorted(glob(data_path + '#*.pkl'))
	
	src = DataMan(src_file)
	srcdata = src.load()
	
	usrhits = []
	for f in usr_file:
		tmp = DataMan(f)
		tmpdata = tmp.load()
		usrhits.append(tmpdata['scores'])

	save_path = data_path + 'result/'
	qfiles = sorted(glob(data_path + 'query/*'))
	im = imread(qfiles[0])
	imsz = im.shape[0:2]
	msk0 = np.zeros(srcdata['labels'][0].shape)

	segmsks = []
	salmsks = []
	for i in range(len(qfiles)):
		im = imread(qfiles[i])
		seg = msk0.copy()
		sal = msk0.copy()
		for k in usrhits[0][i].keys():
			idx = srcdata['labels'][i] == k
			nhits = np.asarray([nhit[i][k] for nhit in usrhits])
			sal[idx] = hit2score(nhits)
			seg[idx] = k
		salmsks.append(sal)
		segmsks.append(seg)

	# normalize all msk 
	# scaler = MinMaxScaler()
	# salscores = scaler.fit_transform(np.asarray(salmsks))

	# save label and salience score map
	savefile([segmsks, salmsks], data_path + 'labels.pkl')

	for i in range(len(qfiles)):
		im = imread(qfiles[i])
		msk = salmsks[i]*255.
		im_rs = imresize(im, msk0.shape, interp='bicubic')
		pl.figure(1)
		pl.clf()
		pl.subplot(1, 2, 1)
		pl.imshow(im_rs)
		pl.subplot(1, 2, 2)
		pl.imshow(color.rgb2grey(im_rs), cmap='gray', alpha=0.6)
		pl.imshow(msk, cmap='hot', vmin=0, vmax=255, alpha=0.6)
		pl.savefig(save_path+'{0:03d}.jpg'.format(i))
		print save_path +'{0:03d}.jpg'.format(i) + ' saved!'

	visualize_imfolder(save_path)