コード例 #1
0
    def fit(self, sess, local_):
        for _ in range(local_):
            sess.run(self.inc_step)
            x_real, _ = next_batch_(FLAGS.bz)
            z = gaussian(FLAGS.bz, FLAGS.z_dim)
            for _ in range(3):
                sess.run(self.d_optim,
                         feed_dict={
                             self.real: x_real,
                             self.z: z,
                             is_training: True
                         })
            sess.run(self.g_optim,
                     feed_dict={
                         self.real: x_real,
                         self.z: z,
                         is_training: True
                     })

        x_real, _ = next_batch_(FLAGS.bz)
        return sess.run(
            [self.d_loss, self.g_loss, self.fit_summary],
            feed_dict={
                self.real: x_real,
                self.z: gaussian(FLAGS.bz, FLAGS.z_dim),
                is_training: False
            })
コード例 #2
0
ファイル: mmd_vae.py プロジェクト: onePnot1/MyResearchCodes
 def fit(self, sess, local_):
     for _ in range(local_):
         x, _ = next_batch_(FLAGS.bz)
         sess.run(self.optim, {
             self.x: x,
             self.z: gaussian(FLAGS.bz, FLAGS.z_dim)
         })
     x, _ = next_batch_(FLAGS.bz * 5)
     return sess.run(
         [self.loss, self.loss_nll, self.loss_mmd, self.fit_summary], {
             self.x: x,
             self.z: gaussian(FLAGS.bz, FLAGS.z_dim)
         })
コード例 #3
0
ファイル: wgan_gp.py プロジェクト: onePnot1/MyResearchCodes
 def fit(self, sess, local_):
     for _ in range(local_):
         x_real, _ = next_batch_(FLAGS.bz)
         z = gaussian(FLAGS.bz, FLAGS.z_dim)
         for _ in range(3):
             sess.run(self.d_adam, feed_dict={self.real: x_real, self.z: z})
         sess.run(self.g_adam, feed_dict={self.real: x_real, self.z: z})
     x_real, _ = next_batch_(FLAGS.bz)
     return sess.run([self.d_loss, self.g_loss, self.fit_summary],
                     feed_dict={
                         self.real: x_real,
                         self.z: gaussian(FLAGS.bz, FLAGS.z_dim)
                     })
コード例 #4
0
def z_real_(bz):
    if FLAGS.z_dist == 'g':
        return gaussian(bz, FLAGS.z_dim, 0, 2)
    elif FLAGS.z_dist == 'mg':
        return gaussian_mixture(bz, FLAGS.z_dim, 10)
    else:
        return swiss_roll(bz, FLAGS.z_dim, 10)
コード例 #5
0
def sample_unlabeled_data():
    x = util.sample_x_variable(batchsize,
                               conf.ndim_x,
                               unlabeled_dataset,
                               gpu_enabled=conf.gpu_enabled)
    noise = sampler.gaussian(batchsize,
                             conf.ndim_x,
                             mean=0,
                             var=0.3,
                             gpu_enabled=conf.gpu_enabled)
    # x.data += noise.data
    return x
コード例 #6
0
def sample_labeled_data():
    x, y_onehot, y_id = util.sample_x_and_label_variables(
        batchsize,
        conf.ndim_x,
        conf.ndim_y,
        labeled_dataset,
        labels,
        gpu_enabled=conf.gpu_enabled)
    noise = sampler.gaussian(batchsize,
                             conf.ndim_x,
                             mean=0,
                             var=0.3,
                             gpu_enabled=conf.gpu_enabled)
    # x.data += noise.data
    return x, y_onehot, y_id
コード例 #7
0
    for t in xrange(1, num_trains_per_epoch + 1):
        # reconstruction phase
        x = sample_unlabeled_data()
        aae.update_learning_rate(conf.learning_rate_for_reconstruction_cost)
        aae.update_momentum(conf.momentum_for_reconstruction_cost)
        sum_loss_autoencoder += aae.train_autoencoder_unsupervised(x)

        # regularization phase
        ## train discriminator
        aae.update_learning_rate(conf.learning_rate_for_adversarial_cost)
        aae.update_momentum(conf.momentum_for_adversarial_cost)
        loss_discriminator = 0
        for k in xrange(n_steps_to_optimize_dis):
            if k > 0:
                x = sample_unlabeled_data()
            z_true = sampler.gaussian(batchsize, conf.ndim_z)
            y_true = sampler.onehot_categorical(batchsize, conf.ndim_y)
            loss_discriminator += aae.train_discriminator_yz(x, y_true, z_true)
        loss_discriminator /= n_steps_to_optimize_dis
        sum_loss_discriminator += loss_discriminator

        ## train generator
        sum_loss_generator += aae.train_generator_x_yz(x)

        # semi-supervised classification phase
        x_labeled, y_onehot, y_id = sample_labeled_data()
        aae.update_learning_rate(conf.learning_rate_for_semi_supervised_cost)
        aae.update_momentum(conf.momentum_for_semi_supervised_cost)
        sum_loss_classifier += aae.train_classifier(x_labeled, y_id)

        if t % 10 == 0:
コード例 #8
0
def main():
    # load MNIST images
    train_images, train_labels = dataset.load_train_images()

    # config
    config = aae.config

    # settings
    # _l -> labeled
    # _u -> unlabeled
    max_epoch = 1000
    num_trains_per_epoch = 5000
    batchsize = 100
    alpha = 1

    # seed
    np.random.seed(args.seed)
    if args.gpu_device != -1:
        cuda.cupy.random.seed(args.seed)

    # classification
    # 0 -> true sample
    # 1 -> generated sample
    class_true = aae.to_variable(np.zeros(batchsize, dtype=np.int32))
    class_fake = aae.to_variable(np.ones(batchsize, dtype=np.int32))

    # training
    progress = Progress()
    for epoch in xrange(1, max_epoch):
        progress.start_epoch(epoch, max_epoch)
        sum_loss_reconstruction = 0
        sum_loss_discriminator = 0
        sum_loss_generator = 0

        for t in xrange(num_trains_per_epoch):
            # sample from data distribution
            images_l, label_onehot_l, label_ids_l = dataset.sample_labeled_data(
                train_images, train_labels, batchsize)

            # reconstruction phase
            z_l = aae.encode_x_z(images_l)
            reconstruction_l = aae.decode_yz_x(label_onehot_l, z_l)
            loss_reconstruction = F.mean_squared_error(
                aae.to_variable(images_l), reconstruction_l)
            aae.backprop_generator(loss_reconstruction)
            aae.backprop_decoder(loss_reconstruction)

            # adversarial phase
            images_l = dataset.sample_labeled_data(train_images, train_labels,
                                                   batchsize)[0]
            z_fake_l = aae.encode_x_z(images_l)
            z_true_l = sampler.gaussian(batchsize,
                                        config.ndim_z,
                                        mean=0,
                                        var=1)
            dz_true = aae.discriminate_z(z_true_l, apply_softmax=False)
            dz_fake = aae.discriminate_z(z_fake_l, apply_softmax=False)
            loss_discriminator = F.softmax_cross_entropy(
                dz_true, class_true) + F.softmax_cross_entropy(
                    dz_fake, class_fake)
            aae.backprop_discriminator(loss_discriminator)

            # adversarial phase
            images_l = dataset.sample_labeled_data(train_images, train_labels,
                                                   batchsize)[0]
            z_fake_l = aae.encode_x_z(images_l)
            dz_fake = aae.discriminate_z(z_fake_l, apply_softmax=False)
            loss_generator = F.softmax_cross_entropy(dz_fake, class_true)
            aae.backprop_generator(loss_generator)

            sum_loss_reconstruction += float(loss_reconstruction.data)
            sum_loss_discriminator += float(loss_discriminator.data)
            sum_loss_generator += float(loss_generator.data)

            if t % 10 == 0:
                progress.show(t, num_trains_per_epoch, {})

        aae.save(args.model_dir)

        progress.show(
            num_trains_per_epoch, num_trains_per_epoch, {
                "loss_r": sum_loss_reconstruction / num_trains_per_epoch,
                "loss_d": sum_loss_discriminator / num_trains_per_epoch,
                "loss_g": sum_loss_generator / num_trains_per_epoch,
            })
コード例 #9
0
def main():
    # load MNIST images
    images, labels = dataset.load_train_images()

    # config
    config = aae.config

    # settings
    # _l -> labeled
    # _u -> unlabeled
    max_epoch = 1000
    num_trains_per_epoch = 5000
    batchsize_l = 100
    batchsize_u = 100
    alpha = 1

    # seed
    np.random.seed(args.seed)
    if args.gpu_device != -1:
        cuda.cupy.random.seed(args.seed)

    # save validation accuracy per epoch
    csv_results = []

    # create semi-supervised split
    num_validation_data = 10000
    num_labeled_data = 100
    num_types_of_label = 10
    training_images_l, training_labels_l, training_images_u, validation_images, validation_labels = dataset.create_semisupervised(
        images,
        labels,
        num_validation_data,
        num_labeled_data,
        num_types_of_label,
        seed=args.seed)
    print training_labels_l

    # classification
    # 0 -> true sample
    # 1 -> generated sample
    class_true = aae.to_variable(np.zeros(batchsize_u, dtype=np.int32))
    class_fake = aae.to_variable(np.ones(batchsize_u, dtype=np.int32))

    # training
    progress = Progress()
    for epoch in xrange(1, max_epoch):
        progress.start_epoch(epoch, max_epoch)
        sum_loss_reconstruction = 0
        sum_loss_supervised = 0
        sum_loss_discriminator = 0
        sum_loss_generator = 0

        for t in xrange(num_trains_per_epoch):
            # sample from data distribution
            images_l, label_onehot_l, label_ids_l = dataset.sample_labeled_data(
                training_images_l, training_labels_l, batchsize_l,
                config.ndim_x, config.ndim_y)
            images_u = dataset.sample_unlabeled_data(training_images_u,
                                                     batchsize_u,
                                                     config.ndim_x)

            # reconstruction phase
            q_y_x_u, z_u = aae.encode_x_yz(images_u, apply_softmax=True)
            reconstruction_u = aae.decode_yz_x(q_y_x_u, z_u)
            loss_reconstruction = F.mean_squared_error(
                aae.to_variable(images_u), reconstruction_u)
            aae.backprop_generator(loss_reconstruction)
            aae.backprop_decoder(loss_reconstruction)

            # adversarial phase
            y_fake_u, z_fake_u = aae.encode_x_yz(images_u, apply_softmax=True)
            z_true_u = sampler.gaussian(batchsize_u,
                                        config.ndim_z,
                                        mean=0,
                                        var=1)
            y_true_u = sampler.onehot_categorical(batchsize_u, config.ndim_y)
            discrimination_z_true = aae.discriminate_z(z_true_u,
                                                       apply_softmax=False)
            discrimination_y_true = aae.discriminate_y(y_true_u,
                                                       apply_softmax=False)
            discrimination_z_fake = aae.discriminate_z(z_fake_u,
                                                       apply_softmax=False)
            discrimination_y_fake = aae.discriminate_y(y_fake_u,
                                                       apply_softmax=False)
            loss_discriminator_z = F.softmax_cross_entropy(
                discrimination_z_true, class_true) + F.softmax_cross_entropy(
                    discrimination_z_fake, class_fake)
            loss_discriminator_y = F.softmax_cross_entropy(
                discrimination_y_true, class_true) + F.softmax_cross_entropy(
                    discrimination_y_fake, class_fake)
            loss_discriminator = loss_discriminator_z + loss_discriminator_y
            aae.backprop_discriminator(loss_discriminator)

            # adversarial phase
            y_fake_u, z_fake_u = aae.encode_x_yz(images_u, apply_softmax=True)
            discrimination_z_fake = aae.discriminate_z(z_fake_u,
                                                       apply_softmax=False)
            discrimination_y_fake = aae.discriminate_y(y_fake_u,
                                                       apply_softmax=False)
            loss_generator_z = F.softmax_cross_entropy(discrimination_z_fake,
                                                       class_true)
            loss_generator_y = F.softmax_cross_entropy(discrimination_y_fake,
                                                       class_true)
            loss_generator = loss_generator_z + loss_generator_y
            aae.backprop_generator(loss_generator)

            # supervised phase
            unnormalized_q_y_x_l, z_l = aae.encode_x_yz(images_l,
                                                        apply_softmax=False)
            loss_supervised = F.softmax_cross_entropy(
                unnormalized_q_y_x_l, aae.to_variable(label_ids_l))
            aae.backprop_generator(loss_supervised)

            sum_loss_reconstruction += float(loss_reconstruction.data)
            sum_loss_supervised += float(loss_supervised.data)
            sum_loss_discriminator += float(loss_discriminator.data)
            sum_loss_generator += float(loss_generator.data)

            if t % 10 == 0:
                progress.show(t, num_trains_per_epoch, {})

        aae.save(args.model_dir)

        # validation phase
        # split validation data to reduce gpu memory consumption
        images_v, _, label_ids_v = dataset.sample_labeled_data(
            validation_images, validation_labels, num_validation_data,
            config.ndim_x, config.ndim_y)
        images_v_segments = np.split(images_v, num_validation_data // 500)
        label_ids_v_segments = np.split(label_ids_v,
                                        num_validation_data // 500)
        num_correct = 0
        for images_v, labels_v in zip(images_v_segments, label_ids_v_segments):
            predicted_labels = aae.argmax_x_label(images_v, test=True)
            for i, label in enumerate(predicted_labels):
                if label == labels_v[i]:
                    num_correct += 1
        validation_accuracy = num_correct / float(num_validation_data)

        progress.show(
            num_trains_per_epoch, num_trains_per_epoch, {
                "loss_r": sum_loss_reconstruction / num_trains_per_epoch,
                "loss_s": sum_loss_supervised / num_trains_per_epoch,
                "loss_d": sum_loss_discriminator / num_trains_per_epoch,
                "loss_g": sum_loss_generator / num_trains_per_epoch,
                "accuracy": validation_accuracy
            })

        # write accuracy to csv
        csv_results.append([epoch, validation_accuracy])
        data = pd.DataFrame(csv_results)
        data.columns = ["epoch", "accuracy"]
        data.to_csv("{}/result.csv".format(args.model_dir))
コード例 #10
0
def main():
	# load MNIST images
	images, labels = dataset.load_train_images()

	# config
	config = aae.config

	# settings
	max_epoch = 1000
	num_trains_per_epoch = 5000
	batchsize = 100
	alpha = 1

	# seed
	np.random.seed(args.seed)
	if args.gpu_device != -1:
		cuda.cupy.random.seed(args.seed)

	# classification
	# 0 -> true sample
	# 1 -> generated sample
	class_true = aae.to_variable(np.zeros(batchsize, dtype=np.int32))
	class_fake = aae.to_variable(np.ones(batchsize, dtype=np.int32))

	# training
	progress = Progress()
	for epoch in xrange(1, max_epoch):
		progress.start_epoch(epoch, max_epoch)
		sum_loss_reconstruction = 0
		sum_loss_discriminator = 0
		sum_loss_generator = 0
		sum_loss_cluster_head = 0

		for t in xrange(num_trains_per_epoch):
			# sample from data distribution
			images_u = dataset.sample_unlabeled_data(images, batchsize)

			# reconstruction phase
			qy_x_u, z_u = aae.encode_x_yz(images_u, apply_softmax=True)
			representation = aae.encode_yz_representation(qy_x_u, z_u)
			reconstruction_u = aae.decode_representation_x(representation)
			loss_reconstruction = F.mean_squared_error(aae.to_variable(images_u), reconstruction_u)
			aae.backprop_generator(loss_reconstruction)
			aae.backprop_decoder(loss_reconstruction)

			# adversarial phase
			y_fake_u, z_fake_u = aae.encode_x_yz(images_u, apply_softmax=True)
			z_true_u = sampler.gaussian(batchsize, config.ndim_z, mean=0, var=1)
			y_true_u = sampler.onehot_categorical(batchsize, config.ndim_y)
			discrimination_z_true = aae.discriminate_z(z_true_u, apply_softmax=False)
			discrimination_y_true = aae.discriminate_y(y_true_u, apply_softmax=False)
			discrimination_z_fake = aae.discriminate_z(z_fake_u, apply_softmax=False)
			discrimination_y_fake = aae.discriminate_y(y_fake_u, apply_softmax=False)
			loss_discriminator_z = F.softmax_cross_entropy(discrimination_z_true, class_true) + F.softmax_cross_entropy(discrimination_z_fake, class_fake)
			loss_discriminator_y = F.softmax_cross_entropy(discrimination_y_true, class_true) + F.softmax_cross_entropy(discrimination_y_fake, class_fake)
			loss_discriminator = loss_discriminator_z + loss_discriminator_y
			aae.backprop_discriminator(loss_discriminator)

			# adversarial phase
			y_fake_u, z_fake_u = aae.encode_x_yz(images_u, apply_softmax=True)
			discrimination_z_fake = aae.discriminate_z(z_fake_u, apply_softmax=False)
			discrimination_y_fake = aae.discriminate_y(y_fake_u, apply_softmax=False)
			loss_generator_z = F.softmax_cross_entropy(discrimination_z_fake, class_true)
			loss_generator_y = F.softmax_cross_entropy(discrimination_y_fake, class_true)
			loss_generator = loss_generator_z + loss_generator_y
			aae.backprop_generator(loss_generator)

			# additional cost function that penalizes the euclidean distance between of every two of cluster
			distance = aae.compute_distance_of_cluster_heads()
			loss_cluster_head = -F.sum(distance)
			aae.backprop_cluster_head(loss_cluster_head)

			sum_loss_reconstruction += float(loss_reconstruction.data)
			sum_loss_discriminator += float(loss_discriminator.data)
			sum_loss_generator += float(loss_generator.data)
			sum_loss_cluster_head += float(aae.nCr(config.ndim_y, 2) * config.cluster_head_distance_threshold + loss_cluster_head.data)

			if t % 10 == 0:
				progress.show(t, num_trains_per_epoch, {})

		aae.save(args.model_dir)

		progress.show(num_trains_per_epoch, num_trains_per_epoch, {
			"loss_r": sum_loss_reconstruction / num_trains_per_epoch,
			"loss_d": sum_loss_discriminator / num_trains_per_epoch,
			"loss_g": sum_loss_generator / num_trains_per_epoch,
			"loss_c": sum_loss_cluster_head / num_trains_per_epoch,
		})
コード例 #11
0
ファイル: train.py プロジェクト: TahjidEshan/GAN_models
def main(run_load_from_file=False):
    # load MNIST images
    images, labels = dataset.load_train_images()

    # config
    opt = Operation()
    opt.check_dir(config.ckpt_dir, is_restart=False)
    opt.check_dir(config.log_dir, is_restart=True)

    # setting
    max_epoch = 510
    num_trains_per_epoch = 500
    batch_size_u = 100

    # training
    with tf.device(config.device):
        h = build_graph()

    sess_config = tf.ConfigProto(allow_soft_placement=True,
                                 log_device_placement=True)
    sess_config.gpu_options.allow_growth = True
    sess_config.gpu_options.per_process_gpu_memory_fraction = 0.9
    saver = tf.train.Saver(max_to_keep=2)

    with tf.Session(config=sess_config) as sess:
        '''
         Load from checkpoint or start a new session

        '''
        if run_load_from_file:
            saver.restore(sess, tf.train.latest_checkpoint(config.ckpt_dir))
            training_epoch_loss, _ = pickle.load(
                open(config.ckpt_dir + '/pickle.pkl', 'rb'))
        else:
            sess.run(tf.global_variables_initializer())
            training_epoch_loss = []

        # Recording loss per epoch
        process = Process()
        for epoch in range(max_epoch):
            process.start_epoch(epoch, max_epoch)
            '''
            Learning rate generator

            '''
            learning_rate = opt.ladder_learning_rate(epoch +
                                                     len(training_epoch_loss))

            # Recording loss per iteration
            training_loss_set = []
            sum_loss_reconstruction = 0
            sum_loss_supervised = 0
            sum_loss_discrminator = 0
            sum_loss_generator = 0

            process_iteration = Process()
            for i in range(num_trains_per_epoch):
                process_iteration.start_epoch(i, num_trains_per_epoch)

                # sample from data distribution
                images_u = dataset.sample_unlabeled_data(images, batch_size_u)

                # reconstruction_phase
                _, loss_reconstruction = sess.run([h.opt_r, h.loss_r],
                                                  feed_dict={
                                                      h.x: images_u,
                                                      h.lr: learning_rate
                                                  })

                z_true_u = sampler.gaussian(batch_size_u,
                                            config.ndim_z,
                                            mean=0,
                                            var=1)
                y_true_u = sampler.onehot_categorical(batch_size_u,
                                                      config.ndim_y)
                # adversarial phase for discriminator
                _, loss_discriminator_y = sess.run([h.opt_dy, h.loss_dy],
                                                   feed_dict={
                                                       h.x: images_u,
                                                       h.y: y_true_u,
                                                       h.lr: learning_rate
                                                   })

                _, loss_discriminator_z = sess.run([h.opt_dz, h.loss_dz],
                                                   feed_dict={
                                                       h.x: images_u,
                                                       h.z: z_true_u,
                                                       h.lr: learning_rate
                                                   })

                loss_discriminator = loss_discriminator_y + loss_discriminator_z

                # adversarial phase for generator
                _, loss_generator_y, loss_generator_z = sess.run(
                    [h.opt_e, h.loss_gy, h.loss_gz],
                    feed_dict={
                        h.x: images_u,
                        h.lr: learning_rate
                    })

                loss_generator = loss_generator_y + loss_generator_z

                training_loss_set.append([
                    loss_reconstruction,
                    loss_discriminator,
                    loss_discriminator_y,
                    loss_discriminator_z,
                    loss_generator,
                    loss_generator_z,
                    loss_generator_y,
                ])

                sum_loss_reconstruction += loss_reconstruction
                sum_loss_discrminator += loss_discriminator
                sum_loss_generator += loss_generator

                if i % 1000 == 0:
                    process_iteration.show_table_2d(
                        i, num_trains_per_epoch, {
                            'reconstruction': sum_loss_reconstruction /
                            (i + 1),
                            'discriminator': sum_loss_discrminator / (i + 1),
                            'generator': sum_loss_generator / (i + 1),
                        })
            # In end of epoch, summary the loss
            average_training_loss_per_epoch = np.mean(
                np.array(training_loss_set), axis=0)

            # append validation accuracy to the training loss
            training_epoch_loss.append(average_training_loss_per_epoch)
            loss_name_per_epoch = [
                'reconstruction',
                'discriminator',
                'discriminator_y',
                'discriminator_z',
                'generator',
                'generator_z',
                'generator_y',
            ]

            if epoch % 1 == 0:
                process.show_bar(
                    epoch, max_epoch, {
                        'loss_r': average_training_loss_per_epoch[0],
                        'loss_d': average_training_loss_per_epoch[1],
                        'loss_g': average_training_loss_per_epoch[4],
                    })

                plt.tile_images(sess.run(h.x_, feed_dict={h.x: images_u}),
                                dir=config.log_dir,
                                filename='x_rec_epoch_{}'.format(
                                    str(epoch).zfill(3)))

            if epoch % 10 == 0:
                saver.save(sess,
                           os.path.join(config.ckpt_dir, 'model_ckptpoint'),
                           global_step=epoch)
                pickle.dump((training_epoch_loss, loss_name_per_epoch),
                            open(config.ckpt_dir + '/pickle.pkl', 'wb'))
コード例 #12
0
 def gen(self, sess, bz):
     return sess.run(self.fake,
                     feed_dict={
                         self.z: gaussian(bz, FLAGS.z_dim),
                         is_training: False
                     })
コード例 #13
0
 def gen(self, sess, bz):
     return sess.run([self.gen_x, self.gen_summary], {self.z: gaussian(bz, FLAGS.z_dim)})
コード例 #14
0
def main():
    # load MNIST images
    images, labels = dataset.load_train_images()

    # config
    config = aae.config

    # settings
    # _l -> labeled
    # _u -> unlabeled
    max_epoch = 1000
    num_trains_per_epoch = 5000
    batchsize_l = 100
    batchsize_u = 100
    alpha = 1

    # seed
    np.random.seed(args.seed)
    if args.gpu_device != -1:
        cuda.cupy.random.seed(args.seed)

    # save validation accuracy per epoch
    csv_results = []

    # create semi-supervised split
    num_validation_data = 10000
    num_labeled_data = 100
    num_types_of_label = 10
    training_images_l, training_labels_l, training_images_u, validation_images, validation_labels = dataset.create_semisupervised(
        images, labels, num_validation_data, num_labeled_data,
        num_types_of_label)

    # classification
    # 0 -> true sample
    # 1 -> generated sample
    class_true = aae.to_variable(np.zeros(batchsize_u, dtype=np.int32))
    class_fake = aae.to_variable(np.ones(batchsize_u, dtype=np.int32))

    # training
    progress = Progress()
    for epoch in xrange(1, max_epoch):
        progress.start_epoch(epoch, max_epoch)
        sum_loss_reconstruction = 0
        sum_loss_supervised = 0
        sum_loss_discriminator = 0
        sum_loss_generator = 0
        sum_loss_cluster_head = 0

        for t in xrange(num_trains_per_epoch):
            # sample from data distribution
            images_l, label_onehot_l, label_ids_l = dataset.sample_labeled_data(
                training_images_l, training_labels_l, batchsize_l)
            images_u = dataset.sample_unlabeled_data(training_images_u,
                                                     batchsize_u)

            # reconstruction phase
            qy_x_u, z_u = aae.encode_x_yz(images_u, apply_softmax=True)
            representation = aae.encode_yz_representation(qy_x_u, z_u)
            reconstruction_u = aae.decode_representation_x(representation)
            loss_reconstruction = F.mean_squared_error(
                aae.to_variable(images_u), reconstruction_u)
            aae.backprop_generator(loss_reconstruction)
            aae.backprop_decoder(loss_reconstruction)

            # adversarial phase
            y_fake_u, z_fake_u = aae.encode_x_yz(images_u, apply_softmax=True)
            z_true_u = sampler.gaussian(batchsize_u,
                                        config.ndim_z,
                                        mean=0,
                                        var=1)
            y_true_u = sampler.onehot_categorical(batchsize_u, config.ndim_y)
            dz_true = aae.discriminate_z(z_true_u, apply_softmax=False)
            dy_true = aae.discriminate_y(y_true_u, apply_softmax=False)
            dz_fake = aae.discriminate_z(z_fake_u, apply_softmax=False)
            dy_fake = aae.discriminate_y(y_fake_u, apply_softmax=False)
            loss_discriminator_z = F.softmax_cross_entropy(
                dz_true, class_true) + F.softmax_cross_entropy(
                    dz_fake, class_fake)
            loss_discriminator_y = F.softmax_cross_entropy(
                dy_true, class_true) + F.softmax_cross_entropy(
                    dy_fake, class_fake)
            loss_discriminator = loss_discriminator_z + loss_discriminator_y
            aae.backprop_discriminator(loss_discriminator)

            # adversarial phase
            y_fake_u, z_fake_u = aae.encode_x_yz(images_u, apply_softmax=True)
            dz_fake = aae.discriminate_z(z_fake_u, apply_softmax=False)
            dy_fake = aae.discriminate_y(y_fake_u, apply_softmax=False)
            loss_generator_z = F.softmax_cross_entropy(dz_fake, class_true)
            loss_generator_y = F.softmax_cross_entropy(dy_fake, class_true)
            loss_generator = loss_generator_z + loss_generator_y
            aae.backprop_generator(loss_generator)

            # supervised phase
            log_qy_x_l, z_l = aae.encode_x_yz(images_l, apply_softmax=False)
            loss_supervised = F.softmax_cross_entropy(
                log_qy_x_l, aae.to_variable(label_ids_l))
            aae.backprop_generator(loss_supervised)

            # additional cost function that penalizes the euclidean distance between of every two of cluster
            distance = aae.compute_distance_of_cluster_heads()
            loss_cluster_head = -F.sum(distance)
            aae.backprop_cluster_head(loss_cluster_head)

            sum_loss_reconstruction += float(loss_reconstruction.data)
            sum_loss_supervised += float(loss_supervised.data)
            sum_loss_discriminator += float(loss_discriminator.data)
            sum_loss_generator += float(loss_generator.data)
            sum_loss_cluster_head += float(
                aae.nCr(config.ndim_y, 2) *
                config.cluster_head_distance_threshold +
                loss_cluster_head.data)

            if t % 10 == 0:
                progress.show(t, num_trains_per_epoch, {})

        aae.save(args.model_dir)

        # validation phase
        images_v_segments = np.split(validation_images,
                                     num_validation_data // 1000)
        labels_v_segments = np.split(validation_labels,
                                     num_validation_data // 1000)
        sum_accuracy = 0
        for images_v, labels_v in zip(images_v_segments, labels_v_segments):
            qy = aae.encode_x_yz(images_v, apply_softmax=True, test=True)[0]
            accuracy = F.accuracy(qy, aae.to_variable(labels_v))
            sum_accuracy += float(accuracy.data)
        validation_accuracy = sum_accuracy / len(images_v_segments)

        progress.show(
            num_trains_per_epoch, num_trains_per_epoch, {
                "loss_r": sum_loss_reconstruction / num_trains_per_epoch,
                "loss_s": sum_loss_supervised / num_trains_per_epoch,
                "loss_d": sum_loss_discriminator / num_trains_per_epoch,
                "loss_g": sum_loss_generator / num_trains_per_epoch,
                "loss_c": sum_loss_cluster_head / num_trains_per_epoch,
                "accuracy": validation_accuracy
            })

        # write accuracy to csv
        csv_results.append([epoch, validation_accuracy])
        data = pd.DataFrame(csv_results)
        data.columns = ["epoch", "accuracy"]
        data.to_csv("{}/result.csv".format(args.model_dir))
コード例 #15
0
ファイル: wgan_gp.py プロジェクト: onePnot1/MyResearchCodes
 def gen(self, sess, bz):
     return sess.run(self.fake,
                     feed_dict={self.z: gaussian(bz, FLAGS.z_dim)})
コード例 #16
0
ファイル: train.py プロジェクト: TahjidEshan/GAN_models
def main(run_load_from_file=False):
    # load MNIST images
    images, labels = dataset.load_test_images()

    # config
    opt = Operation()
    opt.check_dir(config.ckpt_dir, is_restart=False)
    opt.check_dir(config.log_dir, is_restart=True)

    max_epoch = 510
    num_trains_per_epoch = 500
    batch_size_u = 100

    # training
    with tf.device(config.device):
        h = build_graph()

    sess_config = tf.ConfigProto(allow_soft_placement=True,
                                 log_device_placement=True)
    sess_config.gpu_options.allow_growth = True
    sess_config.gpu_options.per_process_gpu_memory_fraction = 0.9
    saver = tf.train.Saver(max_to_keep=2)

    with tf.Session(config=sess_config) as sess:
        '''
         Load from checkpoint or start a new session

        '''
        if run_load_from_file:
            saver.restore(sess, tf.train.latest_checkpoint(config.ckpt_dir))
            training_epoch_loss, _ = pickle.load(
                open(config.ckpt_dir + '/pickle.pkl', 'rb'))
        else:
            sess.run(tf.global_variables_initializer())
            training_epoch_loss = []

        # Recording loss per epoch
        process = Process()
        for epoch in range(max_epoch):
            process.start_epoch(epoch, max_epoch)
            '''
            Learning rate generator

            '''
            learning_rate = 0.0001

            # Recording loss per iteration
            sum_loss_reconstruction = 0
            sum_loss_discrminator_z = 0
            sum_loss_discrminator_img = 0
            sum_loss_generator_z = 0
            sum_loss_generator_img = 0
            process_iteration = Process()
            for i in range(num_trains_per_epoch):
                process_iteration.start_epoch(i, num_trains_per_epoch)
                # Inputs
                '''
                _l -> labeled
                _u -> unlabeled

                '''
                images_u = dataset.sample_unlabeled_data(images, batch_size_u)
                if config.distribution_sampler == 'swiss_roll':
                    z_true_u = sampler.swiss_roll(batch_size_u, config.ndim_z,
                                                  config.num_types_of_label)
                elif config.distribution_sampler == 'gaussian_mixture':
                    z_true_u = sampler.gaussian_mixture(
                        batch_size_u, config.ndim_z, config.num_types_of_label)
                elif config.distribution_sampler == 'uniform_desk':
                    z_true_u = sampler.uniform_desk(batch_size_u,
                                                    config.ndim_z,
                                                    radius=2)
                elif config.distribution_sampler == 'gaussian':
                    z_true_u = sampler.gaussian(batch_size_u,
                                                config.ndim_z,
                                                var=1)
                elif config.distribution_sampler == 'uniform':
                    z_true_u = sampler.uniform(batch_size_u,
                                               config.ndim_z,
                                               minv=-1,
                                               maxv=1)

                # reconstruction_phase
                _, loss_reconstruction = sess.run([h.opt_r, h.loss_r],
                                                  feed_dict={
                                                      h.x: images_u,
                                                      h.lr: learning_rate
                                                  })

                # adversarial phase for discriminator_z
                images_u_s = dataset.sample_unlabeled_data(
                    images, batch_size_u)
                _, loss_discriminator_z = sess.run([h.opt_dz, h.loss_dz],
                                                   feed_dict={
                                                       h.x: images_u,
                                                       h.z: z_true_u,
                                                       h.lr: learning_rate
                                                   })

                _, loss_discriminator_img = sess.run([h.opt_dimg, h.loss_dimg],
                                                     feed_dict={
                                                         h.x: images_u,
                                                         h.x_s: images_u_s,
                                                         h.lr: learning_rate
                                                     })

                # adversarial phase for generator
                _, loss_generator_z = sess.run([h.opt_e, h.loss_e],
                                               feed_dict={
                                                   h.x: images_u,
                                                   h.lr: learning_rate
                                               })

                _, loss_generator_img = sess.run([h.opt_d, h.loss_d],
                                                 feed_dict={
                                                     h.x: images_u,
                                                     h.lr: learning_rate
                                                 })

                sum_loss_reconstruction += loss_reconstruction
                sum_loss_discrminator_z += loss_discriminator_z
                sum_loss_discrminator_img += loss_discriminator_img
                sum_loss_generator_z += loss_generator_z
                sum_loss_generator_img += loss_generator_img

                if i % 1000 == 0:
                    process_iteration.show_table_2d(
                        i, num_trains_per_epoch, {
                            'reconstruction':
                            sum_loss_reconstruction / (i + 1),
                            'discriminator_z':
                            sum_loss_discrminator_z / (i + 1),
                            'discriminator_img':
                            sum_loss_discrminator_img / (i + 1),
                            'generator_z':
                            sum_loss_generator_z / (i + 1),
                            'generator_img':
                            sum_loss_generator_img / (i + 1),
                        })

            average_loss_per_epoch = [
                sum_loss_reconstruction / num_trains_per_epoch,
                sum_loss_discrminator_z / num_trains_per_epoch,
                sum_loss_discrminator_img / num_trains_per_epoch,
                sum_loss_generator_z / num_trains_per_epoch,
                sum_loss_generator_img / num_trains_per_epoch,
                (sum_loss_discrminator_z + sum_loss_discrminator_img) /
                num_trains_per_epoch,
                (sum_loss_generator_z + sum_loss_generator_img) /
                num_trains_per_epoch
            ]
            training_epoch_loss.append(average_loss_per_epoch)
            training_loss_name = [
                'reconstruction', 'discriminator_z', 'discriminator_img',
                'generator_z', 'generator_img', 'discriminator', 'generator'
            ]

            if epoch % 1 == 0:
                process.show_bar(
                    epoch, max_epoch, {
                        'loss_r': average_loss_per_epoch[0],
                        'loss_d': average_loss_per_epoch[5],
                        'loss_g': average_loss_per_epoch[6]
                    })

                plt.scatter_labeled_z(
                    sess.run(h.z_r, feed_dict={h.x: images[:1000]}),
                    [int(var) for var in labels[:1000]],
                    dir=config.log_dir,
                    filename='z_representation-{}'.format(epoch))

            if epoch % 10 == 0:
                saver.save(sess,
                           os.path.join(config.ckpt_dir, 'model_ckptpoint'),
                           global_step=epoch)
                pickle.dump((training_epoch_loss, training_loss_name),
                            open(config.ckpt_dir + '/pickle.pkl', 'wb'))
コード例 #17
0
ファイル: train.py プロジェクト: TahjidEshan/GAN_models
def main(run_load_from_file=False):
    # load MNIST images
    images, labels = dataset.load_train_images()

    # config
    opt = Operation()
    opt.check_dir(config.ckpt_dir, is_restart=False)
    opt.check_dir(config.log_dir, is_restart=True)

    # setting
    max_epoch = 510
    num_trains_per_epoch = 500
    batch_size_l = 100
    batch_size_u = 100

    # create semi-supervised split
    num_validation_data = 10000
    num_labeled_data = 100
    num_types_of_label = 10
    training_images_l, training_labels_l, training_images_u, validation_images, validation_labels = dataset.create_semisupervised(
        images, labels, num_validation_data, num_labeled_data,
        num_types_of_label)

    # training
    with tf.device(config.device):
        h = build_graph()

    sess_config = tf.ConfigProto(allow_soft_placement=True,
                                 log_device_placement=True)
    sess_config.gpu_options.allow_growth = True
    sess_config.gpu_options.per_process_gpu_memory_fraction = 0.9
    saver = tf.train.Saver(max_to_keep=2)

    with tf.Session(config=sess_config) as sess:
        '''
         Load from checkpoint or start a new session

        '''
        if run_load_from_file:
            saver.restore(sess, tf.train.latest_checkpoint(config.ckpt_dir))
            training_epoch_loss, _ = pickle.load(
                open(config.ckpt_dir + '/pickle.pkl', 'rb'))
        else:
            sess.run(tf.global_variables_initializer())
            training_epoch_loss = []

        # Recording loss per epoch
        process = Process()
        for epoch in range(max_epoch):
            process.start_epoch(epoch, max_epoch)
            '''
            Learning rate generator

            '''
            learning_rate = opt.ladder_learning_rate(epoch +
                                                     len(training_epoch_loss))

            # Recording loss per iteration
            training_loss_set = []
            sum_loss_reconstruction = 0
            sum_loss_supervised = 0
            sum_loss_discrminator = 0
            sum_loss_generator = 0
            sum_loss_cluster_head = 0

            process_iteration = Process()
            for i in range(num_trains_per_epoch):
                process_iteration.start_epoch(i, num_trains_per_epoch)

                # sample from data distribution
                images_l, label_onehot_l, label_id_l = dataset.sample_labeled_data(
                    training_images_l, training_labels_l, batch_size_l)
                images_u = dataset.sample_unlabeled_data(
                    training_images_u, batch_size_u)

                # additional cost function that penalizes the euclidean between of every two of cluster
                if epoch == 0:
                    for j in range(5):
                        starting_labels, ending_labels = dataset.cluster_create_dataset(
                            config.ndim_y)
                        _, loss_transform = sess.run(
                            [h.opt_t, h.loss_t],
                            feed_dict={
                                h.g_s: starting_labels,
                                h.g_e: ending_labels,
                                h.lr: learning_rate
                            })

                # reconstruction_phase
                _, loss_reconstruction = sess.run([h.opt_r, h.loss_r],
                                                  feed_dict={
                                                      h.x: images_u,
                                                      h.lr: learning_rate
                                                  })

                z_true_u = sampler.gaussian(batch_size_u,
                                            config.ndim_z,
                                            mean=0,
                                            var=1)
                y_true_u = sampler.onehot_categorical(batch_size_u,
                                                      config.ndim_y)
                # adversarial phase for discriminator
                _, loss_discriminator_y = sess.run([h.opt_dy, h.loss_dy],
                                                   feed_dict={
                                                       h.x: images_u,
                                                       h.y: y_true_u,
                                                       h.lr: learning_rate
                                                   })

                _, loss_discriminator_z = sess.run([h.opt_dz, h.loss_dz],
                                                   feed_dict={
                                                       h.x: images_u,
                                                       h.z: z_true_u,
                                                       h.lr: learning_rate
                                                   })

                loss_discriminator = loss_discriminator_y + loss_discriminator_z

                # adversarial phase for generator
                _, loss_generator_y, loss_generator_z = sess.run(
                    [h.opt_e, h.loss_gy, h.loss_gz],
                    feed_dict={
                        h.x: images_u,
                        h.lr: learning_rate
                    })

                loss_generator = loss_generator_y + loss_generator_z

                # supervised phase
                _, loss_generator_supervised = sess.run([h.opt_ey, h.loss_ey],
                                                        feed_dict={
                                                            h.x: images_l,
                                                            h.y_s: label_id_l,
                                                            h.lr: learning_rate
                                                        })

                training_loss_set.append([
                    loss_reconstruction, loss_discriminator,
                    loss_discriminator_y, loss_discriminator_z, loss_generator,
                    loss_generator_z, loss_generator_y,
                    loss_generator_supervised, loss_transform
                ])

                sum_loss_reconstruction += loss_reconstruction
                sum_loss_discrminator += loss_discriminator
                sum_loss_generator += loss_generator
                sum_loss_supervised += loss_generator_supervised
                sum_loss_cluster_head += loss_transform

                if i % 1000 == 0:
                    process_iteration.show_table_2d(
                        i, num_trains_per_epoch, {
                            'reconstruction': sum_loss_reconstruction /
                            (i + 1),
                            'discriminator': sum_loss_discrminator / (i + 1),
                            'generator': sum_loss_generator / (i + 1),
                            'supervise': sum_loss_supervised / (i + 1),
                            'cluster_head': sum_loss_cluster_head / (i + 1)
                        })
            # In end of epoch, summary the loss
            average_training_loss_per_epoch = np.mean(
                np.array(training_loss_set), axis=0)

            # validation phase
            images_v_segments = np.split(validation_images,
                                         num_validation_data // 1000)
            labels_v_segments = np.split(validation_labels,
                                         num_validation_data // 1000)
            sum_accuracy = 0
            for images_v, labels_v in zip(images_v_segments,
                                          labels_v_segments):
                y_v = sess.run(h.y_r, feed_dict={h.x: images_v})
                accuracy = opt.compute_accuracy(y_v, labels_v)
                sum_accuracy += accuracy
            validation_accuracy = sum_accuracy / len(images_v_segments)

            # append validation accuracy to the training loss
            average_loss_per_epoch = np.append(average_training_loss_per_epoch,
                                               validation_accuracy)
            training_epoch_loss.append(average_loss_per_epoch)
            loss_name_per_epoch = [
                'reconstruction', 'discriminator', 'discriminator_y',
                'discriminator_z', 'generator', 'generator_z', 'generator_y',
                'supervised', 'transform', 'validation_accuracy'
            ]

            if epoch % 1 == 0:
                process.show_bar(
                    epoch, max_epoch, {
                        'loss_r': average_loss_per_epoch[0],
                        'loss_d': average_loss_per_epoch[1],
                        'loss_g': average_loss_per_epoch[4],
                        'loss_v': average_loss_per_epoch[9],
                    })

                plt.tile_images(sess.run(h.x_, feed_dict={h.x: images_u}),
                                dir=config.log_dir,
                                filename='x_rec_epoch_{}'.format(
                                    str(epoch).zfill(3)))

            if epoch % 10 == 0:
                saver.save(sess,
                           os.path.join(config.ckpt_dir, 'model_ckptpoint'),
                           global_step=epoch)
                pickle.dump((training_epoch_loss, loss_name_per_epoch),
                            open(config.ckpt_dir + '/pickle.pkl', 'wb'))
                plt.plot_double_scale_trend(config.ckpt_dir)