def prepare_data_holdout_given_split(path_samples): # ------ Fetch samples samples_train = fetch_samples(os.path.join(path_samples, 'train')) samples_test = fetch_samples(os.path.join(path_samples, 'test')) #samples_test = fetch_samples(os.path.join(path_samples, 'validation')) # ------ Create feature vector from already splitted dataset X_train, X_test, Y_train, Y_test, class_names, fvector_labels = create_fvector_train_test( samples_train, samples_test) return X_train, X_test, Y_train, Y_test, class_names, fvector_labels, samples_train, samples_test
def prepare_data_gridCrossvalidation(path_samples): # ------ Fetch samples samples_train = fetch_samples(os.path.join(path_samples, 'train')) samples_test = fetch_samples(os.path.join(path_samples, 'test')) test_fold = [] for sample in samples_train: test_fold.append(sample['fold']) # ------ Create feature vector X_train, X_test, Y_train, Y_test, class_names, fvector_labels = create_fvector_train_test( samples_train, samples_test) folds = PredefinedSplit(test_fold) return X_train, X_test, Y_train, Y_test, class_names, fvector_labels, folds, samples_train, samples_test
def prepare_data_crossvalidation(path_samples): # ------ Fetch samples samples = fetch_samples(path_samples) # ------ Create feature vector X, Y, class_names, fvector_labels = create_fvector(samples) return X, Y, class_names, fvector_labels, samples
def prepare_data_holdout_random_split(path_samples): # ------ Fetch samples samples = fetch_samples(path_samples) # ------ Create feature vector X, Y, class_names, fvector_labels = create_fvector(samples) # ------ Split Dataset X_train, X_test, Y_train, Y_test = split_dataset(X, Y) return X_train, X_test, Y_train, Y_test, class_names, fvector_labels, samples
def prepare_data_crossvalidation_given_split(path_samples): # ------ Fetch samples samples = fetch_samples(path_samples) test_fold = [] for sample in samples: test_fold.append(sample['fold']) # ------ Create feature vector X, Y, class_names, fvector_labels = create_fvector(samples) folds = PredefinedSplit(test_fold) return X, Y, class_names, fvector_labels, folds, samples