def __init__(self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, with_close_to_self=False, sample_process_options=SampleProcessor.Options(), output_sample_types=[], add_sample_idx=False, add_pitch=False, add_yaw=False, generators_count=2, **kwargs): super().__init__(samples_path, debug, batch_size) self.sample_process_options = sample_process_options self.output_sample_types = output_sample_types self.add_sample_idx = add_sample_idx self.add_pitch = add_pitch self.add_yaw = add_yaw if sort_by_yaw_target_samples_path is not None: self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET elif sort_by_yaw: self.sample_type = SampleType.FACE_YAW_SORTED elif with_close_to_self: self.sample_type = SampleType.FACE_WITH_CLOSE_TO_SELF else: self.sample_type = SampleType.FACE self.samples = SampleLoader.load(self.sample_type, self.samples_path, sort_by_yaw_target_samples_path) if self.debug: self.generators_count = 1 self.generators = [ iter_utils.ThisThreadGenerator(self.batch_func, 0) ] else: self.generators_count = min(generators_count, len(self.samples)) self.generators = [ iter_utils.SubprocessGenerator(self.batch_func, i) for i in range(self.generators_count) ] self.generators_sq = [ multiprocessing.Queue() for _ in range(self.generators_count) ] self.generator_counter = -1
def __init__(self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, sample_process_options=SampleProcessor.Options(), output_sample_types=[], **kwargs): super().__init__(samples_path, debug, batch_size) self.sample_process_options = sample_process_options self.output_sample_types = output_sample_types if sort_by_yaw_target_samples_path is not None: self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET elif sort_by_yaw: self.sample_type = SampleType.FACE_YAW_SORTED else: self.sample_type = SampleType.FACE self.samples = SampleLoader.load(self.sample_type, self.samples_path, sort_by_yaw_target_samples_path) if self.debug: self.generator_samples = [self.samples] self.generators = [ iter_utils.ThisThreadGenerator(self.batch_func, 0) ] else: if len(self.samples) > 1: self.generator_samples = [ self.samples[0::2], self.samples[1::2] ] self.generators = [ iter_utils.SubprocessGenerator(self.batch_func, 0), iter_utils.SubprocessGenerator(self.batch_func, 1) ] else: self.generator_samples = [self.samples] self.generators = [ iter_utils.SubprocessGenerator(self.batch_func, 0) ] self.generator_counter = -1
def batch_func(self, generator_id): samples = self.generator_samples[generator_id] samples_len = len(samples) if samples_len == 0: raise ValueError('No training data provided.') if samples_len - self.temporal_image_count < 0: raise ValueError('Not enough samples to fit temporal line.') shuffle_idxs = [] samples_sub_len = samples_len - self.temporal_image_count + 1 while True: batches = None for n_batch in range(self.batch_size): if len(shuffle_idxs) == 0: shuffle_idxs = random.sample(range(samples_sub_len), samples_sub_len) idx = shuffle_idxs.pop() temporal_samples = [] for i in range(self.temporal_image_count): sample = samples[idx + i] try: temporal_samples += SampleProcessor.process( sample, self.sample_process_options, self.output_sample_types, self.debug) except: raise Exception( "Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc())) if batches is None: batches = [[] for _ in range(len(temporal_samples))] for i in range(len(temporal_samples)): batches[i].append(temporal_samples[i]) yield [np.array(batch) for batch in batches]
def __init__(self, samples_path, debug, batch_size, temporal_image_count, sample_process_options=SampleProcessor.Options(), output_sample_types=[], **kwargs): super().__init__(samples_path, debug, batch_size) self.temporal_image_count = temporal_image_count self.sample_process_options = sample_process_options self.output_sample_types = output_sample_types self.samples = SampleLoader.load(SampleType.IMAGE, self.samples_path) self.generator_samples = [self.samples] self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )] if self.debug else \ [iter_utils.SubprocessGenerator ( self.batch_func, 0 )] self.generator_counter = -1
def batch_func(self, generator_id): gen_sq = self.generators_sq[generator_id] samples = self.samples samples_len = len(samples) samples_idxs = [ *range(samples_len) ] [generator_id::self.generators_count] repeat_samples_idxs = [] if len(samples_idxs) == 0: raise ValueError('No training data provided.') if self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: if all ( [ samples[idx] == None for idx in samples_idxs] ): raise ValueError('Not enough training data. Gather more faces!') if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF: shuffle_idxs = [] elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: shuffle_idxs = [] shuffle_idxs_2D = [[]]*samples_len while True: while not gen_sq.empty(): idxs = gen_sq.get() for idx in idxs: if idx in samples_idxs: repeat_samples_idxs.append(idx) batches = None for n_batch in range(self.batch_size): while True: sample = None if len(repeat_samples_idxs) > 0: idx = repeat_samples_idxs.pop() if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF: sample = samples[idx] elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: sample = samples[(idx >> 16) & 0xFFFF][idx & 0xFFFF] else: if self.sample_type == SampleType.FACE or self.sample_type == SampleType.FACE_WITH_CLOSE_TO_SELF: if len(shuffle_idxs) == 0: shuffle_idxs = samples_idxs.copy() np.random.shuffle(shuffle_idxs) idx = shuffle_idxs.pop() sample = samples[ idx ] elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: if len(shuffle_idxs) == 0: shuffle_idxs = samples_idxs.copy() np.random.shuffle(shuffle_idxs) idx = shuffle_idxs.pop() if samples[idx] != None: if len(shuffle_idxs_2D[idx]) == 0: shuffle_idxs_2D[idx] = random.sample( range(len(samples[idx])), len(samples[idx]) ) idx2 = shuffle_idxs_2D[idx].pop() sample = samples[idx][idx2] idx = (idx << 16) | (idx2 & 0xFFFF) if sample is not None: try: x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug) except: raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) ) if type(x) != tuple and type(x) != list: raise Exception('SampleProcessor.process returns NOT tuple/list') if batches is None: batches = [ [] for _ in range(len(x)) ] if self.add_sample_idx: batches += [ [] ] for i in range(len(x)): batches[i].append ( x[i] ) if self.add_sample_idx: batches[-1].append (idx) break yield [ np.array(batch) for batch in batches]
def batch_func(self, generator_id): samples = self.generator_samples[generator_id] data_len = len(samples) if data_len == 0: raise ValueError('No training data provided.') if self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: if all([x == None for x in samples]): raise ValueError( 'Not enough training data. Gather more faces!') if self.sample_type == SampleType.FACE: shuffle_idxs = [] elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: shuffle_idxs = [] shuffle_idxs_2D = [[]] * data_len while True: batches = None for n_batch in range(self.batch_size): while True: sample = None if self.sample_type == SampleType.FACE: if len(shuffle_idxs) == 0: shuffle_idxs = random.sample( range(data_len), data_len) idx = shuffle_idxs.pop() sample = samples[idx] elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET: if len(shuffle_idxs) == 0: shuffle_idxs = random.sample( range(data_len), data_len) idx = shuffle_idxs.pop() if samples[idx] != None: if len(shuffle_idxs_2D[idx]) == 0: shuffle_idxs_2D[idx] = random.sample( range(len(samples[idx])), len(samples[idx])) idx2 = shuffle_idxs_2D[idx].pop() sample = samples[idx][idx2] if sample is not None: try: x = SampleProcessor.process( sample, self.sample_process_options, self.output_sample_types, self.debug) except: raise Exception( "Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc())) if type(x) != tuple and type(x) != list: raise Exception( 'SampleProcessor.process returns NOT tuple/list' ) if batches is None: batches = [[] for _ in range(len(x))] for i in range(len(x)): batches[i].append(x[i]) break yield [np.array(batch) for batch in batches]