def setUp(self): """ create two different Fq's. """ self.F2 = FinitePrimeField.getInstance(2) f = FinitePrimeFieldPolynomial([(0, 1), (5, 1), (6, 1)], self.F2) self.F64 = FiniteExtendedField(2, f) self.F3 = FinitePrimeField.getInstance(3) f = FinitePrimeFieldPolynomial(enumerate([1, 2, 1, 2, 1]), self.F3) self.F81 = FiniteExtendedField(3, f)
def testCreateElement(self): F125 = FiniteExtendedField(5, 3) self.assertEqual( F125.createElement(6), F125.createElement( FinitePrimeFieldPolynomial(enumerate([1, 1]), FinitePrimeField.getInstance(5)))) self.assertEqual(F125.createElement(6), F125.createElement([1, 1]))
def testInit(self): self.assertEqual(8, card(FiniteExtendedField(2, 3))) f = FinitePrimeFieldPolynomial(enumerate([1, 1, 0, 1]), FinitePrimeField.getInstance(2)) self.assertEqual(8, card(FiniteExtendedField(2, f))) for i in range(10): # 10 might be enough to check random moduli F8 = FiniteExtendedField(2, 3) defining_polynomial = F8.modulus self.assert_(defining_polynomial.degree() == 3) self.assert_(defining_polynomial.isirreducible())
def testContains(self): # elements of the field F125 = FiniteExtendedField(5, 3) self.assert_(F125.one in F125) self.assert_(F125.createElement(17) in F125) # elements of prime fields self.assert_(FinitePrimeField.getInstance(5).one in F125) # different characteristic self.failIf(FinitePrimeFieldElement(3, 7) in F125) # elements of disjoint fields F25 = FiniteExtendedField(5, 2) self.failIf(F25.one in F125) self.failIf(F25.createElement(17) in F125) F625 = FiniteExtendedField(5, 4) self.failIf(F625.one in F125) self.failIf(F625.createElement(17) in F125) # we don't expect an element of extended fields be in the field # even if it actually is. F15625 = FiniteExtendedField(5, 6) self.failIf(F15625.one in F125)
class FinitePrimeFieldTest(unittest.TestCase): def setUp(self): self.F17 = FinitePrimeField(17) def testEq(self): self.assertEqual(self.F17, self.F17) def testNonZero(self): self.failUnless(self.F17) self.failUnless(FinitePrimeField(17L)) def testConst(self): self.assertEqual(FinitePrimeFieldElement(1, 17), self.F17.one) self.assertEqual(FinitePrimeFieldElement(0, 17), self.F17.zero) self.assertEqual(self.F17.one, self.F17.one * self.F17.one) self.assertEqual(self.F17.one, self.F17.one + self.F17.zero) self.assertEqual(self.F17.zero, self.F17.zero * self.F17.zero) def testGetInstance(self): self.assertEqual(self.F17, FinitePrimeField.getInstance(17)) self.failUnless( FinitePrimeField.getInstance(17) is FinitePrimeField.getInstance( 17)) def testStrings(self): self.assertEqual("F_17", str(self.F17)) self.assertEqual("FinitePrimeField(17)", repr(self.F17)) def testSubring(self): self.assert_(self.F17.issubring(self.F17)) self.assert_(self.F17.issuperring(self.F17)) # polynomial ring import nzmath.polynomial as polynomial F17X = polynomial.PolynomialRing(self.F17, 'X') self.assert_(self.F17.issubring(F17X)) self.failIf(self.F17.issuperring(F17X)) # rational field self.failIf(self.F17.issuperring(theRationalField)) self.failIf(self.F17.issubring(theRationalField)) def testHash(self): dictionary = {} dictionary[self.F17] = 1 self.assertEqual(1, dictionary[FinitePrimeField(17)])
def setUp(self): self.F17 = FinitePrimeField(17)
def testRepr(self): f = FinitePrimeFieldPolynomial( [(0, 2), (8, 1)], coeffring=FinitePrimeField.getInstance(311)) self.assertEqual(0, repr(f).index("Finite"))
def testSubring(self): F125 = FiniteExtendedField(5, 3) F5 = FinitePrimeField.getInstance(5) self.failIf(F125.issubring(F5))
def testSuperring(self): F125 = FiniteExtendedField(5, 3) F5 = FinitePrimeField.getInstance(5) self.assert_(F125.issuperring(F5))
def setUp(self): self.F3 = FinitePrimeField.getInstance(3) self.F81 = FiniteExtendedField(3, 4)
def testHash(self): dictionary = {} dictionary[self.F17] = 1 self.assertEqual(1, dictionary[FinitePrimeField(17)])
def testGetInstance(self): self.assertEqual(self.F17, FinitePrimeField.getInstance(17)) self.failUnless( FinitePrimeField.getInstance(17) is FinitePrimeField.getInstance( 17))
def testNonZero(self): self.assertTrue(self.F17) self.assertTrue(FinitePrimeField(17))