def approxUpdateEig(self, subW, ABBA, omega, Q): """ Update the eigenvalue decomposition of ABBA """ # --- remove rows/columns --- if self.n > ABBA.shape[0]: omega, Q = EigenUpdater.eigenRemove(omega, Q, ABBA.shape[0], min(self.k2, ABBA.shape[0])) # --- update existing nodes --- currentN = min(self.n, ABBA.shape[0]) deltaDegrees = numpy.array( subW.sum(0)).ravel()[0:currentN] - self.degrees[:currentN] inds = numpy.arange(currentN)[deltaDegrees != 0] if len(inds) > 0: Y1 = ABBA[:currentN, inds] - self.ABBALast[:currentN, inds] Y1 = numpy.array(Y1.todense()) Y1[inds, :] = Y1[inds, :] / 2 Y2 = numpy.zeros((currentN, inds.shape[0])) Y2[(inds, numpy.arange(inds.shape[0]))] = 1 omega, Q = EigenUpdater.eigenAdd2(omega, Q, Y1, Y2, min(self.k2, currentN)) # --- add rows/columns --- if self.n < ABBA.shape[0]: AB = numpy.array(ABBA[0:self.n, self.n:].todense()) BB = numpy.array(ABBA[self.n:, self.n:].todense()) omega, Q = EigenUpdater.lazyEigenConcatAsUpdate( omega, Q, AB, BB, min(self.k2, ABBA.shape[0])) return omega, Q
def approxUpdateEig(self, subW, ABBA, omega, Q): """ Update the eigenvalue decomposition of ABBA """ # --- remove rows/columns --- if self.n > ABBA.shape[0]: omega, Q = EigenUpdater.eigenRemove(omega, Q, ABBA.shape[0], min(self.k2, ABBA.shape[0])) # --- update existing nodes --- currentN = min(self.n, ABBA.shape[0]) deltaDegrees = numpy.array(subW.sum(0)).ravel()[0:currentN]- self.degrees[:currentN] inds = numpy.arange(currentN)[deltaDegrees!=0] if len(inds) > 0: Y1 = ABBA[:currentN, inds] - self.ABBALast[:currentN, inds] Y1 = numpy.array(Y1.todense()) Y1[inds, :] = Y1[inds, :]/2 Y2 = numpy.zeros((currentN, inds.shape[0])) Y2[(inds, numpy.arange(inds.shape[0]))] = 1 omega, Q = EigenUpdater.eigenAdd2(omega, Q, Y1, Y2, min(self.k2, currentN)) # --- add rows/columns --- if self.n < ABBA.shape[0]: AB = numpy.array(ABBA[0:self.n, self.n:].todense()) BB = numpy.array(ABBA[self.n:, self.n:].todense()) omega, Q = EigenUpdater.lazyEigenConcatAsUpdate(omega, Q, AB, BB, min(self.k2, ABBA.shape[0])) return omega, Q
def testEigenConcat(self): tol = 10**-6 for i in range(3): m = numpy.random.randint(10, 20) n = numpy.random.randint(5, 10) p = numpy.random.randint(5, 10) # A = numpy.zeros((m, n), numpy.complex) # B = numpy.zeros((m, p), numpy.complex) # A.real = numpy.random.randn(m, n) # A.imag = numpy.random.randn(m, n) # B.real = numpy.random.randn(m, p) # B.imag = numpy.random.randn(m, p) A = numpy.random.randn(m, n) B = numpy.random.randn(m, p) #logging.debug("m="+str(m)+" n="+str(n)+" p="+str(p)) AcB = numpy.c_[A, B] ABBA = AcB.conj().T.dot(AcB) AA = ABBA[0:n, 0:n] AB = ABBA[0:n, n:] BB = ABBA[n:, n:] lastError = 1000 lastError2 = 1000 for k in range(1, n): #logging.debug("k="+str(k)) #First compute eigen update estimate omega, Q = numpy.linalg.eig(AA) pi, V = EigenUpdater.eigenConcat(omega, Q, AB, BB, k) ABBAEst = V.dot(numpy.diag(pi)).dot(V.conj().T) t = min(k, Util.rank(ABBA)) self.assertTrue(pi.shape[0] == t) self.assertTrue( numpy.linalg.norm(V.conj().T.dot(V) - numpy.eye(t)) < tol) #Second compute another eigen update estimate omega, Q = numpy.linalg.eig(AA) pi2, V2, D2, D2UD2 = EigenUpdater.lazyEigenConcatAsUpdate( omega, Q, AB, BB, k, debug=True) ABBAEst2 = V2.dot(numpy.diag(pi2)).dot(V2.conj().T) U = ABBA.copy() U[0:n, 0:n] = 0 self.assertTrue( numpy.linalg.norm(U - D2.dot(D2UD2).dot(D2.conj().T)) < tol) t = min(k, Util.rank(ABBA)) self.assertTrue( numpy.linalg.norm(V2.conj().T.dot(V2) - numpy.eye(pi2.shape[0])) < tol) #Compute estimate using eigendecomposition of full matrix sfull, Vfull = numpy.linalg.eig(ABBA) indsfull = numpy.flipud(numpy.argsort(numpy.abs(sfull))) Vfull = Vfull[:, indsfull[0:k]] sfull = sfull[indsfull[0:k]] ABBAEstfull = Vfull.dot(numpy.diag(sfull)).dot(Vfull.conj().T) #The errors should reduce error = numpy.linalg.norm(ABBAEst - ABBA) if Util.rank(ABBA) == k: self.assertTrue(error <= tol) lastError = error error = numpy.linalg.norm(ABBAEst2 - ABBA) self.assertTrue(error <= lastError2 + tol) lastError2 = error
def testEigenConcat(self): tol = 10**-6 for i in range(3): m = numpy.random.randint(10, 20) n = numpy.random.randint(5, 10) p = numpy.random.randint(5, 10) # A = numpy.zeros((m, n), numpy.complex) # B = numpy.zeros((m, p), numpy.complex) # A.real = numpy.random.randn(m, n) # A.imag = numpy.random.randn(m, n) # B.real = numpy.random.randn(m, p) # B.imag = numpy.random.randn(m, p) A = numpy.random.randn(m, n) B = numpy.random.randn(m, p) #logging.debug("m="+str(m)+" n="+str(n)+" p="+str(p)) AcB = numpy.c_[A, B] ABBA = AcB.conj().T.dot(AcB) AA = ABBA[0:n, 0:n] AB = ABBA[0:n, n:] BB = ABBA[n:, n:] lastError = 1000 lastError2 = 1000 for k in range(1,n): #logging.debug("k="+str(k)) #First compute eigen update estimate omega, Q = numpy.linalg.eig(AA) pi, V = EigenUpdater.eigenConcat(omega, Q, AB, BB, k) ABBAEst = V.dot(numpy.diag(pi)).dot(V.conj().T) t = min(k, Util.rank(ABBA)) self.assertTrue(pi.shape[0] == t) self.assertTrue(numpy.linalg.norm(V.conj().T.dot(V) - numpy.eye(t)) < tol) #Second compute another eigen update estimate omega, Q = numpy.linalg.eig(AA) pi2, V2, D2, D2UD2 = EigenUpdater.lazyEigenConcatAsUpdate(omega, Q, AB, BB, k, debug=True) ABBAEst2 = V2.dot(numpy.diag(pi2)).dot(V2.conj().T) U = ABBA.copy() U[0:n, 0:n] = 0 self.assertTrue(numpy.linalg.norm(U - D2.dot(D2UD2).dot(D2.conj().T)) < tol ) t = min(k, Util.rank(ABBA)) self.assertTrue(numpy.linalg.norm(V2.conj().T.dot(V2) - numpy.eye(pi2.shape[0])) < tol) #Compute estimate using eigendecomposition of full matrix sfull, Vfull = numpy.linalg.eig(ABBA) indsfull = numpy.flipud(numpy.argsort(numpy.abs(sfull))) Vfull = Vfull[:, indsfull[0:k]] sfull = sfull[indsfull[0:k]] ABBAEstfull = Vfull.dot(numpy.diag(sfull)).dot(Vfull.conj().T) #The errors should reduce error = numpy.linalg.norm(ABBAEst - ABBA) if Util.rank(ABBA)==k: self.assertTrue(error <= tol) lastError = error error = numpy.linalg.norm(ABBAEst2 - ABBA) self.assertTrue(error <= lastError2+tol) lastError2 = error