def __init__(self, *args, log_scale_limit=2.0, fix_params=False, rand_params=RAND_PARAMS, random_seed=None, fixed_goal=True, max_path_length=0, **kwargs): """ Half-Cheetah environment with randomized mujoco parameters :param log_scale_limit: lower / upper limit for uniform sampling in logspace of base 2 :param random_seed: random seed for sampling the mujoco model params :param fix_params: boolean indicating whether the mujoco parameters shall be fixed :param rand_params: mujoco model parameters to sample """ assert set(rand_params) <= set(self.RAND_PARAMS_EXTENDED), \ "rand_params must be a subset of " + str(self.RAND_PARAMS_EXTENDED) self.log_scale_limit = log_scale_limit self.random_seed = random_seed self.random_state = np.random.RandomState(random_seed) self.fix_params = fix_params # can be changed by calling the fix_mujoco_parameters method self.rand_params = rand_params self.fixed_goal = fixed_goal self.parameters_already_fixed = False self.n_steps = 0 self.reward_range = None self.metadata = {} if max_path_length is not None: self.max_path_length = max_path_length else: self.max_path_length = 10**8 #set to a large number args_all, kwargs_all = get_all_function_arguments(self.__init__, locals()) Serializable.__init__(*args_all, **kwargs_all)
def __init__(self, *args, log_scale_limit=2.0, fix_params=False, fixed_goal=True, random_seed=None, **kwargs): self.sign = 1 self.first = True self.penalty_ctrl = 0.01 self.init_geom_size = None self.init_body_pos = None self.init_geom_pos = None args_all, kwargs_all = get_all_function_arguments( self.__init__, locals()) BaseEnvRandParams.__init__(self, log_scale_limit=log_scale_limit, fix_params=fix_params, rand_params=['geom_size'], fixed_goal=fixed_goal, random_seed=random_seed) MujocoEnv.__init__(self, *args, **kwargs) Serializable.__init__(*args_all, **kwargs_all)
def __init__(self, *args, log_scale_limit=2.0, fix_params=False, rand_params=BaseEnvRandParams.RAND_PARAMS, random_seed=None, max_path_length=None, **kwargs): """ Half-Cheetah environment with randomized mujoco parameters :param log_scale_limit: lower / upper limit for uniform sampling in logspace of base 2 :param random_seed: random seed for sampling the mujoco model params :param fix_params: boolean indicating whether the mujoco parameters shall be fixed :param rand_params: mujoco model parameters to sample """ args_all, kwargs_all = get_all_function_arguments(self.__init__, locals()) BaseEnvRandParams.__init__(*args_all, **kwargs_all) ReacherEnv.__init__(self, *args, **kwargs) Serializable.__init__(*args_all, **kwargs_all)