コード例 #1
0
class GenDiagGaussian:
    def __init__(self,
                 name,
                 abstract_dim,
                 hidden_sizes=(32),
                 min_std=1e-6,
                 hidden_nonlinearity=tf.nn.tanh,
                 output_nonlinearity=None,
                 optim=tf.train.AdamOptimizer(learning_rate=0.001)):
        self.obs_dim = abstract_dim
        self.min_std = min_std
        self.distribution = DiagonalGaussian(self.obs_dim)
        with tf.variable_scope(name):
            self.net = MLP(
                name="mu_log_sigma",
                input_shape=self.obs_dim,
                output_dim=2 * self.obs_dim,
                hidden_sizes=hidden_sizes,
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity,
            )
        self.obs_var = self.net.input_layer.input_var
        self.output = L.get_output(self.net.output_layer, self.obs_var)
        self.mu, unstable_log_sigma = tf.split(self.output,
                                               [self.obs_dim, self.obs_dim], 1)
        self.log_sigma = tf.maximum(unstable_log_sigma, self.min_std)

        self.nexts = tf.placeholder(tf.float32, shape=(None, self.obs_dim))
        self.loss = -self.distribution.log_likelihood(
            self.nexts, dist_info=dict(mean=self.mu, log_stds=self.log_sigma))
        self.optimizer = optim
        self.train_op = optim.minimize(self.loss)

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        self.sess = tf.Session(config=config)
        self.sess.run(tf.global_variables_initializer())

    def forward(self, obs):
        return self.sess.run([self.mu, self.log_sigma],
                             feed_dict={self.obs_var: obs})

    def get_loglikelihood(self, obs, next):
        mu, sigma = self.forward(obs)
        return self.distribution.log_likelihood(next,
                                                dist_info=dict(mean=mu,
                                                               log_stds=sigma))

    def fit(self, obs, nexts, n_steps=25):
        for _ in range(n_steps):
            self.sess.run(self.train_op,
                          feed_dict={
                              self.obs_var: obs,
                              self.nexts: nexts
                          })
        return True
コード例 #2
0
class GaussianMLPPolicy(StochasticPolicy, Serializable):
    def __init__(self,
                 name,
                 env_spec,
                 hidden_sizes=(32, 32),
                 learn_std=True,
                 init_std=1.0,
                 adaptive_std=False,
                 std_share_network=False,
                 std_hidden_sizes=(32, 32),
                 min_std=1e-6,
                 std_hidden_nonlinearity=tf.nn.tanh,
                 hidden_nonlinearity=tf.nn.tanh,
                 output_nonlinearity=tf.identity,
                 mean_network=None,
                 std_network=None,
                 std_parametrization='exp'):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box)

        obs_dim = env_spec.observation_space.flat_dim
        action_dim = env_spec.action_space.flat_dim

        # create network
        self.varScope = name
        with tf.variable_scope(name):
            if mean_network is None:
                self.mean_params = mean_params = self.create_MLP(
                    name="mean_network",
                    input_shape=(
                        None,
                        obs_dim,
                    ),
                    output_dim=action_dim,
                    hidden_sizes=hidden_sizes,
                )
                input_tensor, mean_tensor = self.forward_MLP(
                    'mean_network',
                    mean_params,
                    n_hidden=len(hidden_sizes),
                    input_shape=(obs_dim, ),
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                    reuse=None  # Needed for batch norm
                )
                # if you want to input your own thing.
                self._forward_mean = lambda x, is_train: self.forward_MLP(
                    'mean_network',
                    mean_params,
                    n_hidden=len(hidden_sizes),
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                    input_tensor=x,
                    is_training=is_train)[1]
            else:
                raise NotImplementedError('Chelsea does not support this.')

            if std_network is not None:
                raise NotImplementedError(
                    'Minimal Gaussian MLP does not support this.')
            else:
                if adaptive_std:
                    # NOTE - this branch isn't tested
                    raise NotImplementedError(
                        'Minimal Gaussian MLP doesnt have a tested version of this.'
                    )
                    self.std_params = std_params = self.create_MLP(
                        name="std_network",
                        input_shape=(
                            None,
                            obs_dim,
                        ),
                        output_dim=action_dim,
                        hidden_sizes=std_hidden_sizes,
                    )
                    # if you want to input your own thing.
                    self._forward_std = lambda x: self.forward_MLP(
                        'std_network',
                        std_params,
                        n_hidden=len(hidden_sizes),
                        hidden_nonlinearity=std_hidden_nonlinearity,
                        output_nonlinearity=tf.identity,
                        input_tensor=x)[1]
                else:
                    if std_parametrization == 'exp':
                        init_std_param = np.log(init_std)
                    elif std_parametrization == 'softplus':
                        init_std_param = np.log(np.exp(init_std) - 1)
                    else:
                        raise NotImplementedError
                    self.std_params = make_param_layer(
                        num_units=action_dim,
                        param=tf.constant_initializer(init_std_param),
                        name="output_std_param",
                        trainable=learn_std,
                    )
                    self._forward_std = lambda x: forward_param_layer(
                        x, self.std_params)

        self.std_parametrization = std_parametrization

        if std_parametrization == 'exp':
            min_std_param = np.log(min_std)
        elif std_parametrization == 'softplus':
            min_std_param = np.log(np.exp(min_std) - 1)
        else:
            raise NotImplementedError

        self.min_std_param = min_std_param

        self._dist = DiagonalGaussian(action_dim)

        self._cached_params = {}

        super(GaussianMLPPolicy, self).__init__(env_spec)

        dist_info_sym = self.dist_info_sym(input_tensor,
                                           dict(),
                                           is_training=False)
        mean_var = dist_info_sym["mean"]
        log_std_var = dist_info_sym["log_std"]

        self._f_dist = tensor_utils.compile_function(
            inputs=[input_tensor],
            outputs=[mean_var, log_std_var],
        )

    @property
    def vectorized(self):
        return True

    def compute_stateAction_log_likelihood(self, observations, actions):

        flat_obs = self.observation_space.flatten_n(observations)
        means, log_stds = self._f_dist(
            flat_obs)  # _f_dist runs the network forward.

        return self._dist.log_likelihood(actions, {
            "mean": means,
            "log_std": log_stds
        })

        # rnd = np.random.normal(size=means.shape)
        # actions = rnd * np.exp(log_stds) + means
        # return actions, dict(mean=means, log_std=log_stds)

    def dist_info_sym(self, obs_var, state_info_vars=None, is_training=True):
        # This function constructs the tf graph, only called during beginning of training
        # obs_var - observation tensor
        # mean_var - tensor for policy mean
        # std_param_var - tensor for policy std before output
        mean_var = self._forward_mean(obs_var, is_training)
        std_param_var = self._forward_std(obs_var)
        if self.min_std_param is not None:
            std_param_var = tf.maximum(std_param_var, self.min_std_param)
        if self.std_parametrization == 'exp':
            log_std_var = std_param_var
        elif self.std_parametrization == 'softplus':
            log_std_var = tf.log(tf.log(1. + tf.exp(std_param_var)))
        else:
            raise NotImplementedError
        return dict(mean=mean_var, log_std=log_std_var)

    @overrides
    def get_action(self, observation):
        flat_obs = self.observation_space.flatten(observation)
        mean, log_std = [x[0] for x in self._f_dist([flat_obs])]
        rnd = np.random.normal(size=mean.shape)
        action = rnd * np.exp(log_std) + mean
        return action, dict(mean=mean, log_std=log_std)

    def get_actions(self, observations):
        flat_obs = self.observation_space.flatten_n(observations)
        means, log_stds = self._f_dist(
            flat_obs)  # _f_dist runs the network forward.
        rnd = np.random.normal(size=means.shape)
        actions = rnd * np.exp(log_stds) + means
        return actions, dict(mean=means, log_std=log_stds)

    @property
    def distribution(self):
        return self._dist

    def get_params_internal(self, **tags):
        if tags.get('trainable', False):
            params = tf.trainable_variables()
        else:
            params = tf.all_variables()

        # TODO - this is hacky...
        params = [
            p for p in params
            if p.name.startswith(self.varScope + '/mean_network')
            or p.name.startswith(self.varScope + '/output_std_param')
        ]
        params = [p for p in params if 'Adam' not in p.name]
        return params

    # This makes all of the parameters.
    def create_MLP(
        self,
        name,
        output_dim,
        hidden_sizes,
        hidden_W_init=L.XavierUniformInitializer(),
        hidden_b_init=tf.zeros_initializer,
        output_W_init=L.XavierUniformInitializer(),
        output_b_init=tf.zeros_initializer,
        input_shape=None,
        weight_normalization=False,
    ):
        assert input_shape is not None
        cur_shape = input_shape
        with tf.variable_scope(name):
            all_params = {}
            for idx, hidden_size in enumerate(hidden_sizes):
                W, b, cur_shape = make_dense_layer(
                    cur_shape,
                    num_units=hidden_size,
                    name="hidden_%d" % idx,
                    W=hidden_W_init,
                    b=hidden_b_init,
                    weight_norm=weight_normalization,
                )
                all_params['W' + str(idx)] = W
                all_params['b' + str(idx)] = b
            W, b, _ = make_dense_layer(
                cur_shape,
                num_units=output_dim,
                name='output',
                W=output_W_init,
                b=output_b_init,
                weight_norm=weight_normalization,
            )
            all_params['W' + str(len(hidden_sizes))] = W
            all_params['b' + str(len(hidden_sizes))] = b

            return all_params

    def forward_MLP(self,
                    name,
                    all_params,
                    input_tensor=None,
                    input_shape=None,
                    n_hidden=-1,
                    hidden_nonlinearity=tf.identity,
                    output_nonlinearity=tf.identity,
                    batch_normalization=False,
                    reuse=True,
                    is_training=False):
        # is_training and reuse are for batch norm, irrelevant if batch_norm set to False
        # set reuse to False if the first time this func is called.
        with tf.variable_scope(name):
            if input_tensor is None:
                assert input_shape is not None
                l_in = make_input(shape=(None, ) + input_shape,
                                  input_var=None,
                                  name='input')
            else:
                l_in = input_tensor
            l_hid = l_in
            for idx in range(n_hidden):
                l_hid = forward_dense_layer(l_hid,
                                            all_params['W' + str(idx)],
                                            all_params['b' + str(idx)],
                                            batch_norm=batch_normalization,
                                            nonlinearity=hidden_nonlinearity,
                                            scope=str(idx),
                                            reuse=reuse,
                                            is_training=is_training)
            output = forward_dense_layer(
                l_hid,
                all_params['W' + str(n_hidden)],
                all_params['b' + str(n_hidden)],
                batch_norm=False,
                nonlinearity=output_nonlinearity,
            )
            return l_in, output

    def get_params(self, **tags):
        """
        Get the list of parameters (symbolically), filtered by the provided tags.
        Some common tags include 'regularizable' and 'trainable'
        """
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_params:
            self._cached_params[tag_tuple] = self.get_params_internal(**tags)
        return self._cached_params[tag_tuple]

    def get_param_values(self, **tags):
        params = self.get_params(**tags)
        param_values = tf.get_default_session().run(params)
        return flatten_tensors(param_values)

    def log_diagnostics(self, paths):
        log_stds = np.vstack(
            [path["agent_infos"]["log_std"] for path in paths])
        logger.record_tabular('AveragePolicyStd', np.mean(np.exp(log_stds)))

    #### code not used after here, uunless loading policy ####
    def get_reparam_action_sym(self, obs_var, action_var, old_dist_info_vars):
        """
        Given observations, old actions, and distribution of old actions, return a symbolically reparameterized
        representation of the actions in terms of the policy parameters
        :param obs_var:
        :param action_var:
        :param old_dist_info_vars:
        :return:
        """
        # Not used
        print(
            '--this really shouldnt be used, not updated from non-minimal policy--'
        )
        new_dist_info_vars = self.dist_info_sym(obs_var, action_var)
        new_mean_var, new_log_std_var = new_dist_info_vars[
            "mean"], new_dist_info_vars["log_std"]
        old_mean_var, old_log_std_var = old_dist_info_vars[
            "mean"], old_dist_info_vars["log_std"]
        epsilon_var = (action_var - old_mean_var) / (tf.exp(old_log_std_var) +
                                                     1e-8)
        new_action_var = new_mean_var + epsilon_var * tf.exp(new_log_std_var)
        return new_action_var

    def get_param_dtypes(self, **tags):
        # Not used.
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_param_dtypes:
            params = self.get_params(**tags)
            param_values = tf.get_default_session().run(params)
            self._cached_param_dtypes[tag_tuple] = [
                val.dtype for val in param_values
            ]
        return self._cached_param_dtypes[tag_tuple]

    def get_param_shapes(self, **tags):
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_param_shapes:
            params = self.get_params(**tags)
            param_values = tf.get_default_session().run(params)
            self._cached_param_shapes[tag_tuple] = [
                val.shape for val in param_values
            ]
        return self._cached_param_shapes[tag_tuple]

    def set_param_values(self, flattened_params, **tags):
        debug = tags.pop("debug", False)
        param_values = unflatten_tensors(flattened_params,
                                         self.get_param_shapes(**tags))
        ops = []
        feed_dict = dict()
        for param, dtype, value in zip(self.get_params(**tags),
                                       self.get_param_dtypes(**tags),
                                       param_values):
            if param not in self._cached_assign_ops:
                assign_placeholder = tf.placeholder(
                    dtype=param.dtype.base_dtype)
                assign_op = tf.assign(param, assign_placeholder)
                self._cached_assign_ops[param] = assign_op
                self._cached_assign_placeholders[param] = assign_placeholder
            ops.append(self._cached_assign_ops[param])
            feed_dict[self._cached_assign_placeholders[param]] = value.astype(
                dtype)
            if debug:
                print("setting value of %s" % param.name)
        tf.get_default_session().run(ops, feed_dict=feed_dict)

    def flat_to_params(self, flattened_params, **tags):
        return unflatten_tensors(flattened_params,
                                 self.get_param_shapes(**tags))

    def __getstate__(self):
        d = Serializable.__getstate__(self)
        global load_params
        if load_params:
            d["params"] = self.get_param_values()
        return d

    def __setstate__(self, d):
        Serializable.__setstate__(self, d)
        global load_params
        if load_params:
            tf.get_default_session().run(
                tf.initialize_variables(self.get_params()))
            self.set_param_values(d["params"])
コード例 #3
0
class MAMLGaussianMLPPolicy(StochasticPolicy, Serializable):
    def __init__(
            self,
            name,
            env_spec,
            hidden_sizes=(32, 32),
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            min_std=1e-6,
            std_hidden_nonlinearity=tf.nn.tanh,
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=tf.identity,
            mean_network=None,
            std_network=None,
            std_parametrization='exp',
            grad_step_size=1.0,
            stop_grad=False,
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :param grad_step_size: the step size taken in the learner's gradient update, sample uniformly if it is a range e.g. [0.1,1]
        :param stop_grad: whether or not to stop the gradient through the gradient.
        :return:
        """
        Serializable.quick_init(self, locals())

       
        assert isinstance(env_spec.action_space, Box)

        obs_dim = env_spec.observation_space.flat_dim
        self.action_dim = env_spec.action_space.flat_dim
        self.n_hidden = len(hidden_sizes)
        self.hidden_nonlinearity = hidden_nonlinearity
        self.output_nonlinearity = output_nonlinearity
        self.input_shape = (None, obs_dim,)
        self.step_size = grad_step_size
        self.stop_grad = stop_grad
        if type(self.step_size) == list:
            raise NotImplementedError('removing this since it didnt work well')

        # create network
        if mean_network is None:
            self.all_params = self.create_MLP(  # TODO: this should not be a method of the policy! --> helper
                name="mean_network",
                output_dim=self.action_dim,
                hidden_sizes=hidden_sizes,
            )
            self.input_tensor, _ = self.forward_MLP('mean_network', self.all_params,
                reuse=None # Need to run this for batch norm
            )
            forward_mean = lambda x, params, is_train: self.forward_MLP('mean_network', params,
                input_tensor=x, is_training=is_train)[1]
        else:
            raise NotImplementedError('Not supported.')

        if std_network is not None:
            raise NotImplementedError('Not supported.')
        else:
            if adaptive_std:
                raise NotImplementedError('Not supported.')
            else:
                if std_parametrization == 'exp':
                    init_std_param = np.log(init_std)
                elif std_parametrization == 'softplus':
                    init_std_param = np.log(np.exp(init_std) - 1)
                else:
                    raise NotImplementedError
                self.all_params['std_param'] = make_param_layer(
                    num_units=self.action_dim,
                    param=tf.constant_initializer(init_std_param),
                    name="output_std_param",
                    trainable=learn_std,
                )
                forward_std = lambda x, params: forward_param_layer(x, params['std_param'])
            self.all_param_vals = None

            # unify forward mean and forward std into a single function
            self._forward = lambda obs, params, is_train: (
                    forward_mean(obs, params, is_train), forward_std(obs, params))

            self.std_parametrization = std_parametrization

            if std_parametrization == 'exp':
                min_std_param = np.log(min_std)
            elif std_parametrization == 'softplus':
                min_std_param = np.log(np.exp(min_std) - 1)
            else:
                raise NotImplementedError

            self.min_std_param = min_std_param

            self._dist = DiagonalGaussian(self.action_dim)

            self._cached_params = {}

            super(MAMLGaussianMLPPolicy, self).__init__(env_spec)

            dist_info_sym = self.dist_info_sym(self.input_tensor, dict(), is_training=False)
            mean_var = dist_info_sym["mean"]
            log_std_var = dist_info_sym["log_std"]

            # pre-update policy
            self._init_f_dist = tensor_utils.compile_function(
                inputs=[self.input_tensor],
                outputs=[mean_var, log_std_var],
            )
            self._cur_f_dist = self._init_f_dist


    @property
    def vectorized(self):
        return True

    def set_init_surr_obj(self, input_list, surr_objs_tensor):
        """ Set the surrogate objectives used the update the policy
        """
        self.input_list_for_grad = input_list
        self.surr_objs = surr_objs_tensor


    def compute_updated_dists(self, samples):
        """ Compute fast gradients once per iteration and pull them out of tensorflow for sampling with the post-update policy.
        """
        start = time.time()
        num_tasks = len(samples)
        param_keys = self.all_params.keys()
        update_param_keys = param_keys
        no_update_param_keys = []

        sess = tf.get_default_session()

        obs_list, action_list, adv_list = [], [], []
        for i in range(num_tasks):
            inputs = ext.extract(samples[i],
                    'observations', 'actions', 'advantages')
            obs_list.append(inputs[0])
            action_list.append(inputs[1])
            adv_list.append(inputs[2])

        inputs = obs_list + action_list + adv_list

        # To do a second update, replace self.all_params below with the params that were used to collect the policy.
        init_param_values = None
        if self.all_param_vals is not None:
            init_param_values = self.get_variable_values(self.all_params)

        step_size = self.step_size
        for i in range(num_tasks):
            if self.all_param_vals is not None:
                self.assign_params(self.all_params, self.all_param_vals[i])

        if 'all_fast_params_tensor' not in dir(self):
            # make computation graph once
            self.all_fast_params_tensor = []
            for i in range(num_tasks):
                gradients = dict(zip(update_param_keys, tf.gradients(self.surr_objs[i], [self.all_params[key] for key in update_param_keys])))
                fast_params_tensor = OrderedDict(zip(update_param_keys, [self.all_params[key] - step_size*gradients[key] for key in update_param_keys]))
                for k in no_update_param_keys:
                    fast_params_tensor[k] = self.all_params[k]
                self.all_fast_params_tensor.append(fast_params_tensor)

        # pull new param vals out of tensorflow, so gradient computation only done once ## first is the vars, second the values
        # these are the updated values of the params after the gradient step
        self.all_param_vals = sess.run(self.all_fast_params_tensor, feed_dict=dict(list(zip(self.input_list_for_grad, inputs))))

        if init_param_values is not None:
            self.assign_params(self.all_params, init_param_values)

        outputs = []
        self._cur_f_dist_i = {}
        inputs = tf.split(self.input_tensor, num_tasks, 0)
        for i in range(num_tasks):
            # TODO - use a placeholder to feed in the params, so that we don't have to recompile every time.
            task_inp = inputs[i]
            info, _ = self.dist_info_sym(task_inp, dict(), all_params=self.all_param_vals[i],
                    is_training=False)

            outputs.append([info['mean'], info['log_std']])

        self._cur_f_dist = tensor_utils.compile_function(
            inputs = [self.input_tensor],
            outputs = outputs,
        )
        total_time = time.time() - start
        logger.record_tabular("ComputeUpdatedDistTime", total_time)

    def get_variable_values(self, tensor_dict):
        sess = tf.get_default_session()
        result = sess.run(tensor_dict)
        return result

    def assign_params(self, tensor_dict, param_values):
        if 'assign_placeholders' not in dir(self):
            # make computation graph, if it doesn't exist; then cache it for future use.
            self.assign_placeholders = {}
            self.assign_ops = {}
            for key in tensor_dict.keys():
                self.assign_placeholders[key] = tf.placeholder(tf.float32)
                self.assign_ops[key] = tf.assign(tensor_dict[key], self.assign_placeholders[key])

        feed_dict = {self.assign_placeholders[key]:param_values[key] for key in tensor_dict.keys()}
        sess = tf.get_default_session()
        sess.run(self.assign_ops, feed_dict)


    def switch_to_init_dist(self):
        # switch cur policy distribution to pre-update policy
        self._cur_f_dist = self._init_f_dist
        self._cur_f_dist_i = None
        self.all_param_vals = None

    def dist_info_sym(self, obs_var, state_info_vars=None, all_params=None, is_training=True):
        # This function constructs the tf graph, only called during beginning of meta-training
        # obs_var - observation tensor
        # mean_var - tensor for policy mean
        # std_param_var - tensor for policy std before output
        return_params=True
        if all_params is None:
            return_params=False
            all_params = self.all_params

        mean_var, std_param_var = self._forward(obs_var, all_params, is_training)
        if self.min_std_param is not None:
            std_param_var = tf.maximum(std_param_var, self.min_std_param)
        if self.std_parametrization == 'exp':
            log_std_var = std_param_var
        elif self.std_parametrization == 'softplus':
            log_std_var = tf.log(tf.log(1. + tf.exp(std_param_var)))
        else:
            raise NotImplementedError
        if return_params:
            return dict(mean=mean_var, log_std=log_std_var), all_params
        else:
            return dict(mean=mean_var, log_std=log_std_var)

    def updated_dist_info_sym(self, task_id, surr_obj, new_obs_var, params_dict=None, is_training=True):
        """ symbolically create MAML graph, for the meta-optimization, only called at the beginning of meta-training.
        Called more than once if you want to do more than one grad step.
        """
        old_params_dict = params_dict

        step_size = self.step_size

        if old_params_dict == None:
            old_params_dict = self.all_params
        param_keys = self.all_params.keys()
        update_param_keys = param_keys
        no_update_param_keys = []

        grads = tf.gradients(surr_obj, [old_params_dict[key] for key in update_param_keys])
        if self.stop_grad:
            grads = [tf.stop_gradient(grad) for grad in grads]

        gradients = dict(zip(update_param_keys, grads))
        params_dict = dict(zip(update_param_keys, [old_params_dict[key] - step_size*gradients[key] for key in update_param_keys]))
        for k in no_update_param_keys:
            params_dict[k] = old_params_dict[k]

        return self.dist_info_sym(new_obs_var, all_params=params_dict, is_training=is_training)



    def get_deterministic_action(self, observation, idx=None):
        # this function takes a numpy array observations and outputs randomly sampled actions.
        # idx: index corresponding to the task/updated policy.


        
        flat_obs = self.observation_space.flatten(observation)
        f_dist = self._cur_f_dist
        mean, log_std = [x[0] for x in f_dist([flat_obs])]
        rnd = np.random.normal(size=mean.shape)
        action =  mean
        return action, dict(mean=mean, log_std=log_std)


    @overrides
    def get_action(self, observation, idx=None):
        # this function takes a numpy array observations and outputs randomly sampled actions.
        # idx: index corresponding to the task/updated policy.


       
        flat_obs = self.observation_space.flatten(observation)
        f_dist = self._cur_f_dist
        mean, log_std = [x[0] for x in f_dist([flat_obs])]
        rnd = np.random.normal(size=mean.shape)
        action = rnd * np.exp(log_std) + mean
        return action, dict(mean=mean, log_std=log_std)

    def get_actions(self, observations):
        # this function takes a numpy array observations and outputs sampled actions.
        # Assumes that there is one observation per post-update policy distr
        

        flat_obs = self.observation_space.flatten_n(observations)
        result = self._cur_f_dist(flat_obs)

        if len(result) == 2:
            # NOTE - this code assumes that there aren't 2 meta tasks in a batch
            means, log_stds = result
        else:
           
            means = np.array([res[0] for res in result])[:,0,:]
            log_stds = np.array([res[1] for res in result])[:,0,:]

        rnd = np.random.normal(size=means.shape)
        actions = rnd * np.exp(log_stds) + means
        return actions, dict(mean=means, log_std=log_stds)

    def compute_preUpdatePolicy_logLikelihood(self, observations ,actions):
        # this function takes a numpy array observations and outputs sampled actions.
        # Assumes that there is one observation per post-update policy distr
       
        flat_obs = self.observation_space.flatten_n(observations)
        means, log_stds = self._cur_f_dist(flat_obs)
        
        result =  self._dist.log_likelihood(actions, {"mean" : means , "log_std" : log_stds})
       
        return result
    @property
    def distribution(self):
        return self._dist

    def get_params_internal(self, all_params=False, **tags):
        if tags.get('trainable', False):
            params = tf.trainable_variables()
        else:
            params = tf.global_variables()

       
        params = [p for p in params if p.name.startswith('mean_network') or p.name.startswith('output_std_param')]
        params = [p for p in params if 'Adam' not in p.name]
       
        return params


    # This makes all of the parameters.
    def create_MLP(self, name, output_dim, hidden_sizes,
                   hidden_W_init=tf_layers.xavier_initializer(), hidden_b_init=tf.zeros_initializer(),
                   output_W_init=tf_layers.xavier_initializer(), output_b_init=tf.zeros_initializer(),
                   weight_normalization=False,
                   ):
        all_params = OrderedDict()

        cur_shape = self.input_shape
        with tf.variable_scope(name):
            for idx, hidden_size in enumerate(hidden_sizes):
                W, b, cur_shape = make_dense_layer(
                    cur_shape,
                    num_units=hidden_size,
                    name="hidden_%d" % idx,
                    W=hidden_W_init,
                    b=hidden_b_init,
                    weight_norm=weight_normalization,
                )
                all_params['W' + str(idx)] = W
                all_params['b' + str(idx)] = b
            W, b, _ = make_dense_layer(
                cur_shape,
                num_units=output_dim,
                name='output',
                W=output_W_init,
                b=output_b_init,
                weight_norm=weight_normalization,
            )
            all_params['W' + str(len(hidden_sizes))] = W
            all_params['b'+str(len(hidden_sizes))] = b

        return all_params

    def forward_MLP(self, name, all_params, input_tensor=None,
                    batch_normalization=False, reuse=True, is_training=False):
        # is_training and reuse are for batch norm, irrelevant if batch_norm set to False
        # set reuse to False if the first time this func is called.
        with tf.variable_scope(name):
            if input_tensor is None:
                l_in = make_input(shape=self.input_shape, input_var=None, name='input')
            else:
                l_in = input_tensor

            l_hid = l_in

            for idx in range(self.n_hidden):
                l_hid = forward_dense_layer(l_hid, all_params['W'+str(idx)], all_params['b'+str(idx)],
                                            batch_norm=batch_normalization,
                                            nonlinearity=self.hidden_nonlinearity,
                                            scope=str(idx), reuse=reuse,
                                            is_training=is_training
                                            )
            output = forward_dense_layer(l_hid, all_params['W'+str(self.n_hidden)], all_params['b'+str(self.n_hidden)],
                                         batch_norm=False, nonlinearity=self.output_nonlinearity,
                                         )
            return l_in, output

    def get_params(self, all_params=False, **tags):
        """
        Get the list of parameters (symbolically), filtered by the provided tags.
        Some common tags include 'regularizable' and 'trainable'
        """
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_params:
            self._cached_params[tag_tuple] = self.get_params_internal(all_params, **tags)
        return self._cached_params[tag_tuple]

    def get_param_values(self, all_params=False, **tags):
        params = self.get_params(all_params, **tags)
        param_values = tf.get_default_session().run(params)
        return flatten_tensors(param_values)

    def log_diagnostics(self, paths, prefix=''):
        log_stds = np.vstack([path["agent_infos"]["log_std"] for path in paths])
        logger.record_tabular(prefix+'AveragePolicyStd', np.mean(np.exp(log_stds)))

    #### code largely not used after here except when resuming/loading a policy. ####
    def get_reparam_action_sym(self, obs_var, action_var, old_dist_info_vars):
        """
        Given observations, old actions, and distribution of old actions, return a symbolically reparameterized
        representation of the actions in terms of the policy parameters
        :param obs_var:
        :param action_var:
        :param old_dist_info_vars:
        :return:
        """
        # Not used
        import pdb; pdb.set_trace()
        new_dist_info_vars = self.dist_info_sym(obs_var, action_var)
        new_mean_var, new_log_std_var = new_dist_info_vars["mean"], new_dist_info_vars["log_std"]
        old_mean_var, old_log_std_var = old_dist_info_vars["mean"], old_dist_info_vars["log_std"]
        epsilon_var = (action_var - old_mean_var) / (tf.exp(old_log_std_var) + 1e-8)
        new_action_var = new_mean_var + epsilon_var * tf.exp(new_log_std_var)
        return new_action_var

    def get_param_dtypes(self, all_params=False, **tags):
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_param_dtypes:
            params = self.get_params(all_params, **tags)
            param_values = tf.get_default_session().run(params)
            self._cached_param_dtypes[tag_tuple] = [val.dtype for val in param_values]
        return self._cached_param_dtypes[tag_tuple]

    def get_param_shapes(self, all_params=False, **tags):
        tag_tuple = tuple(sorted(list(tags.items()), key=lambda x: x[0]))
        if tag_tuple not in self._cached_param_shapes:
            params = self.get_params(all_params, **tags)
            param_values = tf.get_default_session().run(params)
            self._cached_param_shapes[tag_tuple] = [val.shape for val in param_values]
        return self._cached_param_shapes[tag_tuple]

    def set_param_values(self, flattened_params, all_params=False, **tags):
        debug = tags.pop("debug", False)
        param_values = unflatten_tensors(
            flattened_params, self.get_param_shapes(all_params, **tags))
        ops = []
        feed_dict = dict()
        for param, dtype, value in zip(
                self.get_params(all_params, **tags),
                self.get_param_dtypes(all_params, **tags),
                param_values):
            if param not in self._cached_assign_ops:
                assign_placeholder = tf.placeholder(dtype=param.dtype.base_dtype)
                assign_op = tf.assign(param, assign_placeholder)
                self._cached_assign_ops[param] = assign_op
                self._cached_assign_placeholders[param] = assign_placeholder
            ops.append(self._cached_assign_ops[param])
            feed_dict[self._cached_assign_placeholders[param]] = value.astype(dtype)
            if debug:
                print("setting value of %s" % param.name)
        tf.get_default_session().run(ops, feed_dict=feed_dict)

    def flat_to_params(self, flattened_params, all_params=False, **tags):
        return unflatten_tensors(flattened_params, self.get_param_shapes(all_params, **tags))

    def __getstate__(self):
        d = Serializable.__getstate__(self)
        global load_params
        if load_params:
            d["params"] = self.get_param_values(all_params=True)
        return d

    def __setstate__(self, d):
        Serializable.__setstate__(self, d)
        global load_params
        if load_params:
            tf.get_default_session().run(tf.variables_initializer(self.get_params(all_params=True)))
            self.set_param_values(d["params"], all_params=True)