コード例 #1
0
    def update_opt(self,
                   loss,
                   target,
                   inputs,
                   extra_inputs=None,
                   *args,
                   **kwargs):
        """
        :param loss: Symbolic expression for the loss function.
        :param target: A parameterized object to optimize over. It should implement methods of the
        :class:`rllab_maml.core.paramerized.Parameterized` class.
        :param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
        :param inputs: A list of symbolic variables as inputs
        :return: No return value.
        """

        self._target = target

        def get_opt_output():
            flat_grad = tensor_utils.flatten_tensor_variables(
                tf.gradients(loss, target.get_params(trainable=True)))
            return [tf.cast(loss, tf.float64), tf.cast(flat_grad, tf.float64)]

        if extra_inputs is None:
            extra_inputs = list()

        self._opt_fun = ext.lazydict(
            f_loss=lambda: tensor_utils.compile_function(
                inputs + extra_inputs, loss),
            f_opt=lambda: tensor_utils.compile_function(
                inputs=inputs + extra_inputs,
                outputs=get_opt_output(),
            ))
コード例 #2
0
 def update_opt(self, loss, target, inputs, inner_kl, outer_kl, extra_inputs=None, meta_batch_size=1, num_grad_updates=1, **kwargs):
     """
     :param inner_kl: Symbolic expression for inner kl
     :param outer_kl: Symbolic expression for outer kl
     :param meta_batch_size: number of MAML tasks, for batcher
     """
     super().update_opt(loss, target, inputs, extra_inputs, **kwargs)
     if extra_inputs is None:
         extra_inputs = list()
     self._opt_fun = ext.lazydict(
         f_loss=lambda: tensor_utils.compile_function(inputs + extra_inputs, loss),
         f_inner_kl=lambda: tensor_utils.compile_function(inputs + extra_inputs, inner_kl),
         f_outer_kl=lambda: tensor_utils.compile_function(inputs + extra_inputs, outer_kl),
     )
     if self.multi_adam > 1:
         update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
         if update_ops:
             # for batch norm
             updates = tf.group(*update_ops)
             with tf.control_dependencies([updates]):
                 self._train_ops = [optimizer.minimize(loss, var_list=target.get_params(trainable=True)) for optimizer in self._tf_optimizers]
         else:
             self._train_ops = [optimizer.minimize(loss, var_list=target.get_params(trainable=True)) for optimizer in self._tf_optimizers]
     self.meta_batch_size = meta_batch_size
     self.num_grad_updates = num_grad_updates
コード例 #3
0
    def update_opt(self, f, target, inputs, reg_coeff):
        self.target = target
        self.reg_coeff = reg_coeff
        params = target.get_params(trainable=True)

        constraint_grads = tf.gradients(f, xs=params)
        for idx, (grad, param) in enumerate(zip(constraint_grads, params)):
            if grad is None:
                constraint_grads[idx] = tf.zeros_like(param)

        xs = tuple([
            tensor_utils.new_tensor_like(p.name.split(":")[0], p)
            for p in params
        ])

        def Hx_plain():
            Hx_plain_splits = tf.gradients(
                tf.reduce_sum(
                    tf.stack([
                        tf.reduce_sum(g * x)
                        for g, x in zip(constraint_grads, xs)
                    ])), params)
            for idx, (Hx, param) in enumerate(zip(Hx_plain_splits, params)):
                if Hx is None:
                    Hx_plain_splits[idx] = tf.zeros_like(param)
            return tensor_utils.flatten_tensor_variables(Hx_plain_splits)

        self.opt_fun = ext.lazydict(
            f_Hx_plain=lambda: tensor_utils.compile_function(
                inputs=inputs + xs,
                outputs=Hx_plain(),
                log_name="f_Hx_plain",
            ), )
コード例 #4
0
 def __init__(self, dim):
     self._dim = dim
     weights_var = tf.placeholder(dtype=tf.float32,
                                  shape=(None, dim),
                                  name="weights")
     self._f_sample = tensor_utils.compile_function(
         inputs=[weights_var],
         outputs=tf.multinomial(weights_var, num_samples=1)[:, 0],
     )
コード例 #5
0
    def update_opt(self, loss, target, leq_constraint, inputs, constraint_name="constraint", *args, **kwargs):
        """
        :param loss: Symbolic expression for the loss function.
        :param target: A parameterized object to optimize over. It should implement methods of the
        :class:`rllab_maml.core.paramerized.Parameterized` class.
        :param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
        :param inputs: A list of symbolic variables as inputs
        :return: No return value.
        """
        constraint_term, constraint_value = leq_constraint
        with tf.variable_scope(self._name):
            penalty_var = tf.placeholder(tf.float32, tuple(), name="penalty")
        penalized_loss = loss + penalty_var * constraint_term

        self._target = target
        self._max_constraint_val = constraint_value
        self._constraint_name = constraint_name

        def get_opt_output():
            params = target.get_params(trainable=True)
            grads = tf.gradients(penalized_loss, params)
            for idx, (grad, param) in enumerate(zip(grads, params)):
                if grad is None:
                    grads[idx] = tf.zeros_like(param)
            flat_grad = tensor_utils.flatten_tensor_variables(grads)
            return [
                tf.cast(penalized_loss, tf.float64),
                tf.cast(flat_grad, tf.float64),
            ]

        self._opt_fun = ext.lazydict(
            f_loss=lambda: tensor_utils.compile_function(inputs, loss, log_name="f_loss"),
            f_constraint=lambda: tensor_utils.compile_function(inputs, constraint_term, log_name="f_constraint"),
            f_penalized_loss=lambda: tensor_utils.compile_function(
                inputs=inputs + [penalty_var],
                outputs=[penalized_loss, loss, constraint_term],
                log_name="f_penalized_loss",
            ),
            f_opt=lambda: tensor_utils.compile_function(
                inputs=inputs + [penalty_var],
                outputs=get_opt_output(),
            )
        )
コード例 #6
0
 def update_opt(self,
                loss,
                target,
                inputs,
                kl,
                extra_inputs=None,
                **kwargs):
     """
     :param inner_kl: Symbolic expression for inner kl
     :param outer_kl: Symbolic expression for outer kl
     :param meta_batch_size: number of MAML tasks, for batcher
     """
     super(PPOOptimizer, self).update_opt(loss, target, inputs,
                                          extra_inputs, **kwargs)
     if extra_inputs is None:
         extra_inputs = list()
     self._opt_fun = ext.lazydict(
         f_loss=lambda: tensor_utils.compile_function(
             inputs + extra_inputs, loss),
         f_kl=lambda: tensor_utils.compile_function(inputs + extra_inputs,
                                                    kl),
     )
コード例 #7
0
 def update_opt(self,
                loss,
                target,
                inputs,
                inner_kl,
                extra_inputs=None,
                meta_batch_size=1,
                num_grad_updates=1,
                **kwargs):
     """
     :param inner_kl: Symbolic expression for inner kl
     :param meta_batch_size: number of MAML tasks, for batcher
     """
     super().update_opt(loss, target, inputs, extra_inputs, **kwargs)
     if extra_inputs is None:
         extra_inputs = list()
     self._opt_fun = ext.lazydict(
         f_loss=lambda: tensor_utils.compile_function(
             inputs + extra_inputs, loss),
         f_inner_kl=lambda: tensor_utils.compile_function(
             inputs + extra_inputs, inner_kl))
     self.meta_batch_size = meta_batch_size
     self.num_grad_updates = num_grad_updates
    def __init__(
            self,
            name,
            env_spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=tf.nn.tanh,
            prob_network=None,
    ):
        """
        :param env_spec: A spec for the mdp.
        :param hidden_sizes: list of sizes for the fully connected hidden layers
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param prob_network: manually specified network for this policy, other network params
        are ignored
        :return:
        """
        Serializable.quick_init(self, locals())

        assert isinstance(env_spec.action_space, Discrete)
        obs_dim = env_spec.observation_space.flat_dim
        action_dim = env_spec.action_space.flat_dim

        with tf.variable_scope(name):
            if prob_network is None:
                prob_network = self.create_MLP(
                    input_shape=(obs_dim,),
                    output_dim=env_spec.action_space.n,
                    hidden_sizes=hidden_sizes,
                    name="prob_network",
                )
            self._l_obs, self._l_prob = self.forward_MLP('prob_network', prob_network,
                n_hidden=len(hidden_sizes), input_shape=(obs_dim,),
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=tf.nn.softmax, reuse=None)

            # if you want to input your own tensor.
            self._forward_out = lambda x, is_train: self.forward_MLP('prob_network', prob_network,
                n_hidden=len(hidden_sizes), hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity, input_tensor=x, is_training=is_train)[1]


            self._f_prob = tensor_utils.compile_function(
                [self._l_obs],
                L.get_output(self._l_prob)
            )

            self._dist = Categorical(env_spec.action_space.n)
コード例 #9
0
    def update_opt(self, f, target, inputs, reg_coeff):
        self.target = target
        self.reg_coeff = reg_coeff

        params = target.get_params(trainable=True)

        constraint_grads = tf.gradients(f, xs=params)
        for idx, (grad, param) in enumerate(zip(constraint_grads, params)):
            if grad is None:
                constraint_grads[idx] = tf.zeros_like(param)

        flat_grad = tensor_utils.flatten_tensor_variables(constraint_grads)

        def f_Hx_plain(
                *args):  #receives inputs and xs(flattened inputs) as arguments
            inputs_ = args[:len(inputs)]
            xs = args[len(inputs):]
            flat_xs = np.concatenate([np.reshape(x, (-1, )) for x in xs])
            param_val = self.target.get_param_values(trainable=True)
            eps = np.cast['float32'](self.base_eps /
                                     (np.linalg.norm(param_val) + 1e-8))
            self.target.set_param_values(param_val + eps * flat_xs,
                                         trainable=True)
            flat_grad_dvplus = self.opt_fun["f_grad"](*inputs_)
            self.target.set_param_values(param_val, trainable=True)
            if self.symmetric:
                self.target.set_param_values(param_val - eps * flat_xs,
                                             trainable=True)
                flat_grad_dvminus = self.opt_fun["f_grad"](*inputs_)
                hx = (flat_grad_dvplus - flat_grad_dvminus) / (2 * eps)
                self.target.set_param_values(param_val, trainable=True)
            else:
                flat_grad = self.opt_fun["f_grad"](*inputs_)
                hx = (flat_grad_dvplus - flat_grad) / eps
            return hx

        self.opt_fun = ext.lazydict(
            f_grad=lambda: tensor_utils.compile_function(
                inputs=inputs,
                outputs=flat_grad,
                log_name="f_grad",
            ),
            f_Hx_plain=lambda: f_Hx_plain,
        )
コード例 #10
0
    def __init__(
        self,
        name,
        env_spec,
        hidden_sizes=(32, 32),
        hidden_nonlinearity=tf.nn.tanh,
        prob_network=None,
    ):
        """
        :param env_spec: A spec for the mdp.
        :param hidden_sizes: list of sizes for the fully connected hidden layers
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param prob_network: manually specified network for this policy, other network params
        are ignored
        :return:
        """
        Serializable.quick_init(self, locals())

        assert isinstance(env_spec.action_space, Discrete)

        with tf.variable_scope(name):
            if prob_network is None:
                prob_network = MLP(
                    input_shape=(env_spec.observation_space.flat_dim, ),
                    output_dim=env_spec.action_space.n,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=tf.nn.softmax,
                    name="prob_network",
                )

            self._l_prob = prob_network.output_layer
            self._l_obs = prob_network.input_layer
            self._f_prob = tensor_utils.compile_function(
                [prob_network.input_layer.input_var],
                L.get_output(prob_network.output_layer))

            self._dist = Categorical(env_spec.action_space.n)

            super(CategoricalMLPPolicy, self).__init__(env_spec)
            LayersPowered.__init__(self, [prob_network.output_layer])
コード例 #11
0
    def update_opt(self, loss, target, inputs, extra_inputs=None, **kwargs):
        # Initializes the update opt used in the optimization
        """
        :param loss: Symbolic expression for the loss function.
        :param target: A parameterized object to optimize over. It should implement methods of the
        :class:`rllab_maml.core.paramerized.Parameterized` class.
        :param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
        :param inputs: A list of symbolic variables as inputs
        :return: No return value.
        """

        self._target = target

        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        if update_ops:
            # for batch norm
            updates = tf.group(*update_ops)
            with tf.control_dependencies([updates]):

                self._train_op = self._tf_optimizer.minimize(
                    loss, var_list=target.get_params(trainable=True))
                if self._init_tf_optimizer is not None:
                    self._init_train_op = self._init_tf_optimizer.minimize(
                        loss, var_list=target.get_params(trainable=True))
        else:
            self._train_op = self._tf_optimizer.minimize(
                loss, var_list=target.get_params(trainable=True))
            if self._init_tf_optimizer is not None:
                self._init_train_op = self._init_tf_optimizer.minimize(
                    loss, var_list=target.get_params(trainable=True))

        if extra_inputs is None:
            extra_inputs = list()
        self._input_vars = inputs + extra_inputs
        self._opt_fun = ext.lazydict(
            f_loss=lambda: tensor_utils.compile_function(
                inputs + extra_inputs, loss), )

        self.debug_loss = loss
        self.debug_vars = target.get_params(trainable=True)
        self.debug_target = target
コード例 #12
0
    def __init__(self,
                 name,
                 input_shape,
                 output_dim,
                 mean_network=None,
                 hidden_sizes=(32, 32),
                 hidden_nonlinearity=tf.nn.tanh,
                 optimizer=None,
                 use_trust_region=True,
                 step_size=0.01,
                 learn_std=True,
                 init_std=1.0,
                 adaptive_std=False,
                 std_share_network=False,
                 std_hidden_sizes=(32, 32),
                 std_nonlinearity=None,
                 normalize_inputs=True,
                 normalize_outputs=True,
                 subsample_factor=1.0):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        :param use_trust_region: Whether to use trust region constraint.
        :param step_size: KL divergence constraint for each iteration
        :param learn_std: Whether to learn the standard deviations. Only effective if adaptive_std is False. If
        adaptive_std is True, this parameter is ignored, and the weights for the std network are always learned.
        :param adaptive_std: Whether to make the std a function of the states.
        :param std_share_network: Whether to use the same network as the mean.
        :param std_hidden_sizes: Number of hidden units of each layer of the std network. Only used if
        `std_share_network` is False. It defaults to the same architecture as the mean.
        :param std_nonlinearity: Non-linearity used for each layer of the std network. Only used if `std_share_network`
        is False. It defaults to the same non-linearity as the mean.
        """
        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):

            if optimizer is None:
                if use_trust_region:
                    optimizer = PenaltyLbfgsOptimizer("optimizer")
                else:
                    optimizer = LbfgsOptimizer("optimizer")

            self._optimizer = optimizer
            self._subsample_factor = subsample_factor

            if mean_network is None:
                mean_network = MLP(
                    name="mean_network",
                    input_shape=input_shape,
                    output_dim=output_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=None,
                )

            l_mean = mean_network.output_layer

            if adaptive_std:
                l_log_std = MLP(
                    name="log_std_network",
                    input_shape=input_shape,
                    input_var=mean_network.input_layer.input_var,
                    output_dim=output_dim,
                    hidden_sizes=std_hidden_sizes,
                    hidden_nonlinearity=std_nonlinearity,
                    output_nonlinearity=None,
                ).output_layer
            else:
                l_log_std = L.ParamLayer(
                    mean_network.input_layer,
                    num_units=output_dim,
                    param=tf.constant_initializer(np.log(init_std)),
                    name="output_log_std",
                    trainable=learn_std,
                )

            LayersPowered.__init__(self, [l_mean, l_log_std])

            xs_var = mean_network.input_layer.input_var
            ys_var = tf.placeholder(dtype=tf.float32,
                                    name="ys",
                                    shape=(None, output_dim))
            old_means_var = tf.placeholder(dtype=tf.float32,
                                           name="ys",
                                           shape=(None, output_dim))
            old_log_stds_var = tf.placeholder(dtype=tf.float32,
                                              name="old_log_stds",
                                              shape=(None, output_dim))

            x_mean_var = tf.Variable(
                np.zeros((1, ) + input_shape, dtype=np.float32),
                name="x_mean",
            )
            x_std_var = tf.Variable(
                np.ones((1, ) + input_shape, dtype=np.float32),
                name="x_std",
            )
            y_mean_var = tf.Variable(
                np.zeros((1, output_dim), dtype=np.float32),
                name="y_mean",
            )
            y_std_var = tf.Variable(
                np.ones((1, output_dim), dtype=np.float32),
                name="y_std",
            )

            normalized_xs_var = (xs_var - x_mean_var) / x_std_var
            normalized_ys_var = (ys_var - y_mean_var) / y_std_var

            normalized_means_var = L.get_output(
                l_mean, {mean_network.input_layer: normalized_xs_var})
            normalized_log_stds_var = L.get_output(
                l_log_std, {mean_network.input_layer: normalized_xs_var})

            means_var = normalized_means_var * y_std_var + y_mean_var
            log_stds_var = normalized_log_stds_var + tf.log(y_std_var)

            normalized_old_means_var = (old_means_var - y_mean_var) / y_std_var
            normalized_old_log_stds_var = old_log_stds_var - tf.log(y_std_var)

            dist = self._dist = DiagonalGaussian(output_dim)

            normalized_dist_info_vars = dict(mean=normalized_means_var,
                                             log_std=normalized_log_stds_var)

            mean_kl = tf.reduce_mean(
                dist.kl_sym(
                    dict(mean=normalized_old_means_var,
                         log_std=normalized_old_log_stds_var),
                    normalized_dist_info_vars,
                ))

            loss = -tf.reduce_mean(
                dist.log_likelihood_sym(normalized_ys_var,
                                        normalized_dist_info_vars))

            self._f_predict = tensor_utils.compile_function([xs_var],
                                                            means_var)
            self._f_pdists = tensor_utils.compile_function(
                [xs_var], [means_var, log_stds_var])
            self._l_mean = l_mean
            self._l_log_std = l_log_std

            optimizer_args = dict(
                loss=loss,
                target=self,
                network_outputs=[
                    normalized_means_var, normalized_log_stds_var
                ],
            )

            if use_trust_region:
                optimizer_args["leq_constraint"] = (mean_kl, step_size)
                optimizer_args["inputs"] = [
                    xs_var, ys_var, old_means_var, old_log_stds_var
                ]
            else:
                optimizer_args["inputs"] = [xs_var, ys_var]

            self._optimizer.update_opt(**optimizer_args)

            self._use_trust_region = use_trust_region
            self._name = name

            self._normalize_inputs = normalize_inputs
            self._normalize_outputs = normalize_outputs
            self._mean_network = mean_network
            self._x_mean_var = x_mean_var
            self._x_std_var = x_std_var
            self._y_mean_var = y_mean_var
            self._y_std_var = y_std_var
コード例 #13
0
    def __init__(
        self,
        name,
        env_spec,
        hidden_sizes=(32, 32),
        learn_std=True,
        init_std=1.0,
        adaptive_std=False,
        bias_transform=False,
        std_share_network=False,
        std_hidden_sizes=(32, 32),
        min_std=1e-6,
        std_hidden_nonlinearity=tf.nn.tanh,
        hidden_nonlinearity=tf.nn.tanh,
        output_nonlinearity=tf.identity,
        mean_network=None,
        std_network=None,
        std_parametrization='exp',
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std: boolean indicating whether std shall be a trainable variable
        :param bias_transform: boolean indicating whether bias transformation shall be added to the MLP
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :param grad_step_size: (float) the step size taken in the learner's gradient update
        :param trainable_step_size: boolean indicating whether the inner grad_step_size shall be trainable
        :param stop_grad: whether or not to stop the gradient through the gradient.
        :param: parameter_space_noise: (boolean) whether parameter space noise shall be used when sampling from the policy
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box) or isinstance(
            env_spec.action_space, BoxMAML)

        obs_dim = env_spec.observation_space.flat_dim
        self.action_dim = env_spec.action_space.flat_dim
        self.n_hidden = len(hidden_sizes)
        self.hidden_nonlinearity = hidden_nonlinearity
        self.output_nonlinearity = output_nonlinearity
        self.input_shape = (
            None,
            obs_dim,
        )
        self.name = name

        with tf.variable_scope(self.name):

            # create network
            if mean_network is None:
                self.all_params = create_MLP(  # TODO: this should not be a method of the policy! --> helper
                    name="mean_network",
                    input_shape=self.input_shape,
                    output_dim=self.action_dim,
                    hidden_sizes=hidden_sizes,
                    bias_transform=bias_transform,
                )
                self.input_tensor, _ = forward_MLP(
                    'mean_network',
                    self.input_shape,
                    self.n_hidden,
                    self.hidden_nonlinearity,
                    self.output_nonlinearity,
                    self.all_params,
                    reuse=None,  # Need to run this for batch norm
                    bias_transform=bias_transform,
                )

                forward_mean = lambda x, params, is_train: forward_MLP(
                    'mean_network',
                    self.input_shape,
                    self.n_hidden,
                    self.hidden_nonlinearity,
                    self.output_nonlinearity,
                    params,
                    input_tensor=x,
                    is_training=is_train,
                    bias_transform=bias_transform)[1]
            else:
                raise NotImplementedError('Not supported.')

            if std_network is not None:
                raise NotImplementedError('Not supported.')
            else:
                if adaptive_std:
                    raise NotImplementedError('Not supported.')
                else:
                    if std_parametrization == 'exp':
                        init_std_param = np.log(init_std)
                    elif std_parametrization == 'softplus':
                        init_std_param = np.log(np.exp(init_std) - 1)
                    else:
                        raise NotImplementedError
                    self.all_params['std_param'] = make_param_layer(
                        num_units=self.action_dim,
                        param=tf.constant_initializer(init_std_param),
                        name="output_std_param",
                        trainable=learn_std,
                    )
                    forward_std = lambda x, params: forward_param_layer(
                        x, params['std_param'])

                # unify forward mean and forward std into a single function
                self._forward = lambda obs, params, is_train: (forward_mean(
                    obs, params, is_train), forward_std(obs, params))

                self.std_parametrization = std_parametrization

                if std_parametrization == 'exp':
                    min_std_param = np.log(min_std)
                elif std_parametrization == 'softplus':
                    min_std_param = np.log(np.exp(min_std) - 1)
                else:
                    raise NotImplementedError

                self.min_std_param = min_std_param

                self._dist = DiagonalGaussian(self.action_dim)

                self._cached_params = {}

                super(BaseMLPPolicy, self).__init__(env_spec)

                dist_info_sym = self.dist_info_sym(self.input_tensor,
                                                   dict(),
                                                   is_training=False)
                mean_var = dist_info_sym["mean"]
                log_std_var = dist_info_sym["log_std"]

                # pre-update policy
                self._cur_f_dist = tensor_utils.compile_function(
                    inputs=[self.input_tensor],
                    outputs=[mean_var, log_std_var],
                )
コード例 #14
0
    def init_opt(self):
        is_recurrent = int(self.policy.recurrent)

        obs_var = self.env.observation_space.new_tensor_variable(
            'obs',
            extra_dims=1 + is_recurrent,
        )
        action_var = self.env.action_space.new_tensor_variable(
            'action',
            extra_dims=1 + is_recurrent,
        )
        advantage_var = tensor_utils.new_tensor(
            name='advantage',
            ndim=1 + is_recurrent,
            dtype=tf.float32,
        )
        dist = self.policy.distribution

        old_dist_info_vars = {
            k: tf.placeholder(tf.float32,
                              shape=[None] * (1 + is_recurrent) + list(shape),
                              name='old_%s' % k)
            for k, shape in dist.dist_info_specs
        }
        old_dist_info_vars_list = [
            old_dist_info_vars[k] for k in dist.dist_info_keys
        ]

        state_info_vars = {
            k: tf.placeholder(tf.float32,
                              shape=[None] * (1 + is_recurrent) + list(shape),
                              name=k)
            for k, shape in self.policy.state_info_specs
        }
        state_info_vars_list = [
            state_info_vars[k] for k in self.policy.state_info_keys
        ]

        if is_recurrent:
            valid_var = tf.placeholder(tf.float32,
                                       shape=[None, None],
                                       name="valid")
        else:
            valid_var = None

        dist_info_vars = self.policy.dist_info_sym(obs_var, state_info_vars)
        logli = dist.log_likelihood_sym(action_var, dist_info_vars)
        kl = dist.kl_sym(old_dist_info_vars, dist_info_vars)

        # formulate as a minimization problem
        # The gradient of the surrogate objective is the policy gradient
        if is_recurrent:
            surr_obj = -tf.reduce_sum(
                logli * advantage_var * valid_var) / tf.reduce_sum(valid_var)
            mean_kl = tf.reduce_sum(kl * valid_var) / tf.reduce_sum(valid_var)
            max_kl = tf.reduce_max(kl * valid_var)
        else:
            surr_obj = -tf.reduce_mean(logli * advantage_var)
            mean_kl = tf.reduce_mean(kl)
            max_kl = tf.reduce_max(kl)

        input_list = [obs_var, action_var, advantage_var
                      ] + state_info_vars_list
        if is_recurrent:
            input_list.append(valid_var)

        #self.policy.set_init_surr_obj(input_list, [surr_obj])  # debugging
        self.optimizer.update_opt(loss=surr_obj,
                                  target=self.policy,
                                  inputs=input_list)

        f_kl = tensor_utils.compile_function(
            inputs=input_list + old_dist_info_vars_list,
            outputs=[mean_kl, max_kl],
        )
        self.opt_info = dict(f_kl=f_kl, )
コード例 #15
0
    def compute_updated_dists(self, samples):
        """ Compute fast gradients once per iteration and pull them out of tensorflow for sampling with the post-update policy.
        """
        start = time.time()
        num_tasks = len(samples)
        param_keys = self.all_params.keys()
        update_param_keys = param_keys
        no_update_param_keys = []

        sess = tf.get_default_session()

        obs_list, action_list, adv_list = [], [], []
        for i in range(num_tasks):
            inputs = ext.extract(samples[i], 'observations', 'actions',
                                 'advantages')
            obs_list.append(inputs[0])
            action_list.append(inputs[1])
            adv_list.append(inputs[2])

        inputs = obs_list + action_list + adv_list

        # To do a second update, replace self.all_params below with the params that were used to collect the policy.
        init_param_values = None
        if self.all_param_vals is not None:  # skip this in first iteration
            init_param_values = self.get_variable_values(self.all_params)

        step_size = self.step_size
        for i in range(num_tasks):
            if self.all_param_vals is not None:  # skip this in first iteration
                self.assign_params(self.all_params, self.all_param_vals[i])

        if 'all_fast_params_tensor' not in dir(
                self):  # only enter if first iteration
            # make computation graph once
            self.all_fast_params_tensor = []
            # compute gradients for a current task (symbolic)
            for i in range(num_tasks):
                # compute gradients for a current task (symbolic)
                gradients = dict(
                    zip(
                        update_param_keys,
                        tf.gradients(self.surr_objs[i], [
                            self.all_params[key] for key in update_param_keys
                        ])))

                # gradient update for params of current task (symbolic)
                fast_params_tensor = OrderedDict(
                    zip(update_param_keys, [
                        self.all_params[key] - step_size * gradients[key]
                        for key in update_param_keys
                    ]))

                # undo gradient update for no_update_params (symbolic)
                for k in no_update_param_keys:
                    fast_params_tensor[k] = self.all_params[k]

                # tensors that represent the updated params for all of the tasks (symbolic)
                self.all_fast_params_tensor.append(fast_params_tensor)

        # pull new param vals out of tensorflow, so gradient computation only done once ## first is the vars, second the values
        # these are the updated values of the params after the gradient step

        self.all_param_vals = sess.run(
            self.all_fast_params_tensor,
            feed_dict=dict(list(zip(self.input_list_for_grad, inputs))))

        # reset parameters to original ones
        if init_param_values is not None:  # skip this in first iteration
            self.assign_params(self.all_params, init_param_values)

        # compile the _cur_f_dist with updated params
        outputs = []
        inputs = tf.split(self.input_tensor, num_tasks, 0)
        for i in range(num_tasks):
            # TODO - use a placeholder to feed in the params, so that we don't have to recompile every time.
            task_inp = inputs[i]
            info, _ = self.dist_info_sym(task_inp,
                                         dict(),
                                         all_params=self.all_param_vals[i],
                                         is_training=False)

            outputs.append([info['mean'], info['log_std']])

        self._cur_f_dist = tensor_utils.compile_function(
            inputs=[self.input_tensor],
            outputs=outputs,
        )
        total_time = time.time() - start
        logger.record_tabular("ComputeUpdatedDistTime", total_time)
コード例 #16
0
    def __init__(self,
                 name,
                 env_spec,
                 hidden_sizes=(32, 32),
                 learn_std=True,
                 init_std=1.0,
                 adaptive_std=False,
                 std_share_network=False,
                 std_hidden_sizes=(32, 32),
                 min_std=1e-6,
                 std_hidden_nonlinearity=tf.nn.tanh,
                 hidden_nonlinearity=tf.nn.tanh,
                 output_nonlinearity=None,
                 mean_network=None,
                 std_network=None,
                 std_parametrization='exp'):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box)

        with tf.variable_scope(name):

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            # create network
            if mean_network is None:
                mean_network = MLP(
                    name="mean_network",
                    input_shape=(obs_dim, ),
                    output_dim=action_dim,
                    hidden_sizes=hidden_sizes,
                    hidden_nonlinearity=hidden_nonlinearity,
                    output_nonlinearity=output_nonlinearity,
                )
            self._mean_network = mean_network

            l_mean = mean_network.output_layer
            obs_var = mean_network.input_layer.input_var

            if std_network is not None:
                l_std_param = std_network.output_layer
            else:
                if adaptive_std:
                    std_network = MLP(
                        name="std_network",
                        input_shape=(obs_dim, ),
                        input_layer=mean_network.input_layer,
                        output_dim=action_dim,
                        hidden_sizes=std_hidden_sizes,
                        hidden_nonlinearity=std_hidden_nonlinearity,
                        output_nonlinearity=None,
                    )
                    l_std_param = std_network.output_layer
                else:
                    if std_parametrization == 'exp':
                        init_std_param = np.log(init_std)
                    elif std_parametrization == 'softplus':
                        init_std_param = np.log(np.exp(init_std) - 1)
                    else:
                        raise NotImplementedError
                    l_std_param = L.ParamLayer(
                        mean_network.input_layer,
                        num_units=action_dim,
                        param=tf.constant_initializer(init_std_param),
                        name="output_std_param",
                        trainable=learn_std,
                    )

            self.std_parametrization = std_parametrization

            if std_parametrization == 'exp':
                min_std_param = np.log(min_std)
            elif std_parametrization == 'softplus':
                min_std_param = np.log(np.exp(min_std) - 1)
            else:
                raise NotImplementedError

            self.min_std_param = min_std_param

            # mean_var, log_std_var = L.get_output([l_mean, l_std_param])
            #
            # if self.min_std_param is not None:
            #     log_std_var = tf.maximum(log_std_var, np.log(min_std))
            #
            # self._mean_var, self._log_std_var = mean_var, log_std_var

            self._l_mean = l_mean
            self._l_std_param = l_std_param

            self._dist = DiagonalGaussian(action_dim)

            LayersPowered.__init__(self, [l_mean, l_std_param])
            super(GaussianMLPPolicy, self).__init__(env_spec)

            dist_info_sym = self.dist_info_sym(
                mean_network.input_layer.input_var, dict())
            mean_var = dist_info_sym["mean"]
            log_std_var = dist_info_sym["log_std"]

            self._f_dist = tensor_utils.compile_function(
                inputs=[obs_var],
                outputs=[mean_var, log_std_var],
            )
コード例 #17
0
    def __init__(
        self,
        name,
        env_spec,
        hidden_sizes=(32, 32),
        hidden_nonlinearity=tf.nn.tanh,
        prob_network=None,
        grad_step_size=1.0,
    ):
        """
        :param env_spec: A spec for the mdp.
        :param hidden_sizes: list of sizes for the fully connected hidden layers
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param prob_network: manually specified network for this policy, other network params
        are ignored
        :param grad_step_size: the step size taken in the learner's gradient update, sample uniformly if it is a range e.g. [0.1,1]
        :return:
        """
        Serializable.quick_init(self, locals())

        assert isinstance(env_spec.action_space, Discrete)
        obs_dim = env_spec.observation_space.flat_dim
        self.action_dim = env_spec.action_space.n
        self.n_hidden = len(hidden_sizes)
        self.hidden_nonlinearity = hidden_nonlinearity
        self.input_shape = (
            None,
            obs_dim,
        )
        self.step_size = grad_step_size

        if prob_network is None:
            self.all_params = self.create_MLP(
                output_dim=self.action_dim,
                hidden_sizes=hidden_sizes,
                name="prob_network",
            )
        self._l_obs, self._l_prob = self.forward_MLP(
            'prob_network',
            self.all_params,
            n_hidden=len(hidden_sizes),
            input_shape=(obs_dim, ),
            hidden_nonlinearity=hidden_nonlinearity,
            output_nonlinearity=tf.nn.softmax,
            reuse=None)

        # if you want to input your own tensor.
        self._forward_out = lambda x, params, is_train: self.forward_MLP(
            'prob_network',
            params,
            n_hidden=len(hidden_sizes),
            hidden_nonlinearity=hidden_nonlinearity,
            output_nonlinearity=tf.nn.softmax,
            input_tensor=x,
            is_training=is_train)[1]

        self._init_f_prob = tensor_utils.compile_function([self._l_obs],
                                                          [self._l_prob])
        self._cur_f_prob = self._init_f_prob

        self._dist = Categorical(self.action_dim)
        self._cached_params = {}
        super(MAMLCategoricalMLPPolicy, self).__init__(env_spec)
コード例 #18
0
    def compute_updated_dists(self, samples):
        """
        Compute fast gradients once per iteration and pull them out of tensorflow for sampling with the post-update policy.
        """
        start = time.time()
        num_tasks = len(samples)
        param_keys = self.all_params.keys()
        update_param_keys = param_keys
        no_update_param_keys = []

        sess = tf.get_default_session()

        obs_list, action_list, adv_list, distr_list = [], [], [], []
        for i in range(num_tasks):
            inputs = ext.extract(samples[i],
                                 'observations', 'actions', 'advantages', 'agent_infos')
            obs_list.append(inputs[0])
            action_list.append(inputs[1])
            adv_list.append(inputs[2])
            distr_list.extend(inputs[3][k] for k in self.distribution.dist_info_keys)
             
        inputs = obs_list + action_list + adv_list + distr_list

        # To do a second update, replace self.all_params below with the params that were used to collect the policy.
        if self.first_inner_step:  # skip this in first iteration
            self.init_param_values = self.get_variable_values(self.all_params)
            self.all_param_vals = [self.get_variable_values(self.all_params) for _ in range(num_tasks)]

        if self.params_ph is None:
            self.params_ph = [OrderedDict([(key, tf.placeholder(tf.float32, shape=value.shape))
                                              for key, value in self.all_params.items()])
                                 for _ in range(num_tasks)]

        if 'all_fast_params_tensor' not in dir(self):  # only enter if first iteration
            # make computation graph once
            self.all_fast_params_tensor = []
            # compute gradients for a current task (symbolic)
            for i in range(num_tasks):
                # compute gradients for a current task (symbolic)
                for key in self.all_params.keys():
                    tf.assign(self.all_params[key], self.params_ph[i][key])
                gradients = dict(zip(update_param_keys, tf.gradients(self.surr_objs[i],
                                                                     [self.all_params[key] for key in
                                                                      update_param_keys])))

                # gradient update for params of current task (symbolic)
                fast_params_tensor = OrderedDict(zip(update_param_keys,
                                                     [self.all_params[key] - tf.multiply(
                                                         self.param_step_sizes[key + "_step_size"], gradients[key]) for
                                                      key in update_param_keys]))

                # add step sizes to fast_params_tensor
                fast_params_tensor.update(self.param_step_sizes)

                # undo gradient update for no_update_params (symbolic)
                for k in no_update_param_keys:
                    fast_params_tensor[k] = self.all_params[k]

                # tensors that represent the updated params for all of the tasks (symbolic)
                self.all_fast_params_tensor.append(fast_params_tensor)

        # pull new param vals out of tensorflow, so gradient computation only done once ## first is the vars, second the values
        # these are the updated values of the params after the gradient step
        feed_dict = list(zip(self.input_list_for_grad, inputs))
        feed_dict_params = list((self.params_ph[task][key], self.all_param_vals[task][key])
                                     for task in range(num_tasks) for key in self.params_ph[0].keys())
        feed_dict = dict(feed_dict + feed_dict_params)

        self.all_param_vals = sess.run(self.all_fast_params_tensor, feed_dict=feed_dict)
        if self.all_param_ph is None:
            self.all_param_ph = [OrderedDict([(key, tf.placeholder(tf.float32, shape=value.shape))
                                              for key, value in self.all_param_vals[0].items()])
                                 for _ in range(num_tasks)]

        # reset parameters to original ones
        self.assign_params(self.all_params, self.init_param_values)

        # compile the _cur_f_dist with updated params
        if not self.compiled:
            outputs = []
            with tf.variable_scope("post_updated_policy"):
                inputs = tf.split(self.input_tensor, num_tasks, 0)
                for i in range(num_tasks):
                    # TODO - use a placeholder to feed in the params, so that we don't have to recompile every time.
                    task_inp = inputs[i]
                    info, _ = self.dist_info_sym(task_inp, dict(), all_params=self.all_param_ph[i],
                                                 is_training=False)

                    outputs.append([info['mean'], info['log_std']])

                self.__cur_f_dist = tensor_utils.compile_function(
                    inputs=[self.input_tensor, self.param_noise_std_ph] + sum([list(param_ph.values())
                                                                               for param_ph in self.all_param_ph], []),
                    outputs=outputs,
                )
            self.compiled = True
        self._cur_f_dist = self.__cur_f_dist
        self.first_inner_step = False
コード例 #19
0
    def compute_updated_dists(self, samples):
        """ Compute fast gradients once and pull them out of tensorflow for sampling.
        """
        num_tasks = len(samples)
        param_keys = self.all_params.keys()

        sess = tf.get_default_session()

        obs_list, action_list, adv_list = [], [], []
        for i in range(num_tasks):
            inputs = ext.extract(samples[i], 'observations', 'actions',
                                 'advantages')
            obs_list.append(inputs[0])
            action_list.append(inputs[1])
            adv_list.append(inputs[2])

        inputs = obs_list + action_list + adv_list

        # To do a second update, replace self.all_params below with the params that were used to collect the policy.
        init_param_values = None
        if self.all_param_vals is not None:
            init_param_values = self.get_variable_values(self.all_params)

        step_size = self.step_size
        for i in range(num_tasks):
            if self.all_param_vals is not None:
                self.assign_params(self.all_params, self.all_param_vals[i])

        if 'all_fast_params_tensor' not in dir(self):
            # make computation graph once
            self.all_fast_params_tensor = []
            for i in range(num_tasks):
                gradients = dict(
                    zip(
                        param_keys,
                        tf.gradients(
                            self.surr_objs[i],
                            [self.all_params[key] for key in param_keys])))
                fast_params_tensor = dict(
                    zip(param_keys, [
                        self.all_params[key] - step_size * gradients[key]
                        for key in param_keys
                    ]))
                self.all_fast_params_tensor.append(fast_params_tensor)

        # pull new param vals out of tensorflow, so gradient computation only done once
        self.all_param_vals = sess.run(
            self.all_fast_params_tensor,
            feed_dict=dict(list(zip(self.input_list_for_grad, inputs))))

        if init_param_values is not None:
            self.assign_params(self.all_params, init_param_values)

        outputs = []
        inputs = tf.split(0, num_tasks, self._l_obs)
        for i in range(num_tasks):
            # TODO - use a placeholder to feed in the params, so that we don't have to recompile every time.
            task_inp = inputs[i]
            info, _ = self.dist_info_sym(task_inp,
                                         dict(),
                                         all_params=self.all_param_vals[i],
                                         is_training=False)

            outputs.append([info['prob']])

        self._cur_f_prob = tensor_utils.compile_function(
            inputs=[self._l_obs],
            outputs=outputs,
        )
コード例 #20
0
    def __init__(
            self,
            name,
            env_spec,
            hidden_sizes=(32, 32),
            learn_std=True,
            init_std=1.0,
            adaptive_std=False,
            std_share_network=False,
            std_hidden_sizes=(32, 32),
            min_std=1e-6,
            std_hidden_nonlinearity=tf.nn.tanh,
            hidden_nonlinearity=tf.nn.tanh,
            output_nonlinearity=tf.identity,
            mean_network=None,
            std_network=None,
            std_parametrization='exp'
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std:
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :return:
        """
        Serializable.quick_init(self, locals())
        assert isinstance(env_spec.action_space, Box)

        obs_dim = env_spec.observation_space.flat_dim
        action_dim = env_spec.action_space.flat_dim

        # create network
        if mean_network is None:
            self.mean_params = mean_params = self.create_MLP(
                name="mean_network",
                input_shape=(None, obs_dim,),
                output_dim=action_dim,
                hidden_sizes=hidden_sizes,
            )
            input_tensor, mean_tensor = self.forward_MLP('mean_network', mean_params, n_hidden=len(hidden_sizes),
                input_shape=(obs_dim,),
                hidden_nonlinearity=hidden_nonlinearity,
                output_nonlinearity=output_nonlinearity,
                reuse=None # Needed for batch norm
            )
            # if you want to input your own thing.
            self._forward_mean = lambda x, is_train: self.forward_MLP('mean_network', mean_params, n_hidden=len(hidden_sizes),
                hidden_nonlinearity=hidden_nonlinearity, output_nonlinearity=output_nonlinearity, input_tensor=x, is_training=is_train)[1]
        else:
            raise NotImplementedError('Chelsea does not support this.')

        if std_network is not None:
            raise NotImplementedError('Minimal Gaussian MLP does not support this.')
        else:
            if adaptive_std:
                # NOTE - this branch isn't tested
                raise NotImplementedError('Minimal Gaussian MLP doesnt have a tested version of this.')
                self.std_params = std_params = self.create_MLP(
                    name="std_network",
                    input_shape=(None, obs_dim,),
                    output_dim=action_dim,
                    hidden_sizes=std_hidden_sizes,
                )
                # if you want to input your own thing.
                self._forward_std = lambda x: self.forward_MLP('std_network', std_params, n_hidden=len(hidden_sizes),
                                                                  hidden_nonlinearity=std_hidden_nonlinearity,
                                                                output_nonlinearity=tf.identity,
                                                                input_tensor=x)[1]
            else:
                if std_parametrization == 'exp':
                    init_std_param = np.log(init_std)
                elif std_parametrization == 'softplus':
                    init_std_param = np.log(np.exp(init_std) - 1)
                else:
                    raise NotImplementedError
                self.std_params = make_param_layer(
                    num_units=action_dim,
                    param=tf.constant_initializer(init_std_param),
                    name="output_std_param",
                    trainable=learn_std,
                )
                self._forward_std = lambda x: forward_param_layer(x, self.std_params)

        self.std_parametrization = std_parametrization

        if std_parametrization == 'exp':
            min_std_param = np.log(min_std)
        elif std_parametrization == 'softplus':
            min_std_param = np.log(np.exp(min_std) - 1)
        else:
            raise NotImplementedError

        self.min_std_param = min_std_param

        self._dist = DiagonalGaussian(action_dim)

        self._cached_params = {}

        super(GaussianMLPPolicy, self).__init__(env_spec)

        dist_info_sym = self.dist_info_sym(input_tensor, dict(), is_training=False)
        mean_var = dist_info_sym["mean"]
        log_std_var = dist_info_sym["log_std"]

        self._f_dist = tensor_utils.compile_function(
            inputs=[input_tensor],
            outputs=[mean_var, log_std_var],
        )
コード例 #21
0
    def __init__(
        self,
        name,
        env_spec,
        hidden_sizes=(32, 32),
        learn_std=True,
        num_tasks=1,
        init_std=1.0,
        adaptive_std=False,
        bias_transform=False,
        std_share_network=False,
        std_hidden_sizes=(32, 32),
        min_std=1e-6,
        std_hidden_nonlinearity=tf.nn.tanh,
        hidden_nonlinearity=tf.nn.tanh,
        output_nonlinearity=tf.identity,
        mean_network=None,
        std_network=None,
        std_parametrization='exp',
        grad_step_size=0.1,
        trainable_step_size=False,
        stop_grad=False,
    ):
        """
        :param env_spec:
        :param hidden_sizes: list of sizes for the fully-connected hidden layers
        :param learn_std: Is std trainable
        :param init_std: Initial std
        :param adaptive_std: boolean indicating whether std shall be a trainable variable
        :param bias_transform: boolean indicating whether bias transformation shall be added to the MLP
        :param std_share_network:
        :param std_hidden_sizes: list of sizes for the fully-connected layers for std
        :param min_std: whether to make sure that the std is at least some threshold value, to avoid numerical issues
        :param std_hidden_nonlinearity:
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :param output_nonlinearity: nonlinearity for the output layer
        :param mean_network: custom network for the output mean
        :param std_network: custom network for the output log std
        :param std_parametrization: how the std should be parametrized. There are a few options:
            - exp: the logarithm of the std will be stored, and applied a exponential transformation
            - softplus: the std will be computed as log(1+exp(x))
        :param grad_step_size: (float) the step size taken in the learner's gradient update
        :param trainable_step_size: boolean indicating whether the inner grad_step_size shall be trainable
        :param stop_grad: whether or not to stop the gradient through the gradient.
        :param: parameter_space_noise: (boolean) whether parameter space noise shall be used when sampling from the policy
        """

        Serializable.quick_init(self, locals())

        BaseMLPPolicy.__init__(
            self,
            name,
            env_spec,
            hidden_sizes=hidden_sizes,
            learn_std=learn_std,
            init_std=init_std,
            adaptive_std=adaptive_std,
            bias_transform=bias_transform,
            std_share_network=std_share_network,
            std_hidden_sizes=std_hidden_sizes,
            min_std=min_std,
            std_hidden_nonlinearity=std_hidden_nonlinearity,
            hidden_nonlinearity=hidden_nonlinearity,
            output_nonlinearity=output_nonlinearity,
            mean_network=mean_network,
            std_network=std_network,
        )

        self.stop_grad = stop_grad
        self.num_tasks = num_tasks
        self.all_fast_params_tensor = []
        self._all_param_gradients = []
        self.all_param_vals = None  #[self.get_variable_values(self.all_params)] * num_tasks
        self.init_param_vals = None
        self.param_step_sizes = {}
        self.grad_step_size = grad_step_size
        self.trainable_step_size = trainable_step_size
        self._update_input_keys = ['observations', 'actions', 'advantages']

        with tf.variable_scope(self.name):

            # Create placeholders for the param weights of the different tasks
            self.all_params_ph = [
                OrderedDict([(key, tf.placeholder(tf.float32,
                                                  shape=value.shape))
                             for key, value in self.all_params.items()])
                for _ in range(num_tasks)
            ]

            # Create the variables for the inner learning rate
            for key, param in self.all_params.items():
                shape = param.get_shape().as_list()
                init_stepsize = np.ones(shape,
                                        dtype=np.float32) * self.grad_step_size
                self.param_step_sizes[key + "_step_size"] = tf.Variable(
                    initial_value=init_stepsize,
                    name='step_size_%s' % key,
                    dtype=tf.float32,
                    trainable=self.trainable_step_size)

            # compile the _cur_f_dist with updated params
            outputs = []
            with tf.variable_scope("post_updated_policy"):
                inputs = tf.split(self.input_tensor, self.num_tasks, 0)
                for i in range(self.num_tasks):
                    task_inp = inputs[i]
                    dist_info, _ = self.dist_info_sym(
                        task_inp,
                        dict(),
                        all_params=self.all_params_ph[i],
                        is_training=False)

                    outputs.append([dist_info['mean'], dist_info['log_std']])

                # TODO: Set a different name for this _cur_f_dist, so you can obtain actions w/o needing the params if
                # TODO: you aren't using the get_actions_batch (it'll be needed at test time when you are just evaluating
                # TODO: in one task)
                self._batch_cur_f_dist = tensor_utils.compile_function(
                    inputs=[self.input_tensor] + sum([
                        list(param_task_ph.values())
                        for param_task_ph in self.all_params_ph
                    ], []),  # All the parameter values of the policy
                    outputs=outputs,
                )
コード例 #22
0
    def __init__(
        self,
        name,
        input_shape,
        output_dim,
        network=None,
        hidden_sizes=(32, 32),
        hidden_nonlinearity=tf.nn.tanh,
        output_nonlinearity=None,
        optimizer=None,
        normalize_inputs=True,
    ):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        """
        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):

            if optimizer is None:
                optimizer = LbfgsOptimizer(name="optimizer")

            self.output_dim = output_dim
            self.optimizer = optimizer

            if network is None:
                network = MLP(input_shape=input_shape,
                              output_dim=output_dim,
                              hidden_sizes=hidden_sizes,
                              hidden_nonlinearity=hidden_nonlinearity,
                              output_nonlinearity=output_nonlinearity,
                              name="network")

            l_out = network.output_layer

            LayersPowered.__init__(self, [l_out])

            xs_var = network.input_layer.input_var
            ys_var = tf.placeholder(dtype=tf.float32,
                                    shape=[None, output_dim],
                                    name="ys")

            x_mean_var = tf.get_variable(name="x_mean",
                                         shape=(1, ) + input_shape,
                                         initializer=tf.constant_initializer(
                                             0., dtype=tf.float32))
            x_std_var = tf.get_variable(name="x_std",
                                        shape=(1, ) + input_shape,
                                        initializer=tf.constant_initializer(
                                            1., dtype=tf.float32))

            normalized_xs_var = (xs_var - x_mean_var) / x_std_var

            fit_ys_var = L.get_output(l_out,
                                      {network.input_layer: normalized_xs_var})

            loss = -tf.reduce_mean(tf.square(fit_ys_var - ys_var))

            self.f_predict = tensor_utils.compile_function([xs_var],
                                                           fit_ys_var)

            optimizer_args = dict(
                loss=loss,
                target=self,
                network_outputs=[fit_ys_var],
            )

            optimizer_args["inputs"] = [xs_var, ys_var]

            self.optimizer.update_opt(**optimizer_args)

            self.name = name
            self.l_out = l_out

            self.normalize_inputs = normalize_inputs
            self.x_mean_var = x_mean_var
            self.x_std_var = x_std_var
コード例 #23
0
    def init_opt(self):
        # TODO Commented out all KL stuff for now, since it is only used for logging
        # To see how it can be turned on, see maml_npo.py
        is_recurrent = int(self.policy.recurrent)
        assert not is_recurrent  # not supported right now.
        dist = self.policy.distribution

        old_dist_info_vars, old_dist_info_vars_list = [], []
        for i in range(self.meta_batch_size):
            old_dist_info_vars.append({
                k: tf.placeholder(tf.float32,
                                  shape=[None] + list(shape),
                                  name='old_%s_%s' % (i, k))
                for k, shape in dist.dist_info_specs
            })
            old_dist_info_vars_list += [
                old_dist_info_vars[i][k] for k in dist.dist_info_keys
            ]

        state_info_vars, state_info_vars_list = {}, []

        all_surr_objs, input_list = [], []
        new_params = None
        for j in range(self.num_grad_updates):
            obs_vars, action_vars, adv_vars = self.make_vars(str(j))
            surr_objs = []

            cur_params = new_params
            new_params = []

            for i in range(self.meta_batch_size):
                if j == 0:
                    dist_info_vars, params = self.policy.dist_info_sym(
                        obs_vars[i],
                        state_info_vars,
                        all_params=self.policy.all_params)
                else:
                    dist_info_vars, params = self.policy.updated_dist_info_sym(
                        i,
                        all_surr_objs[-1][i],
                        obs_vars[i],
                        params_dict=cur_params[i])

                new_params.append(params)
                logli = dist.log_likelihood_sym(action_vars[i], dist_info_vars)

                # formulate as a minimization problem
                # The gradient of the surrogate objective is the policy gradient
                surr_objs.append(-tf.reduce_mean(logli * adv_vars[i]))

            input_list += obs_vars + action_vars + adv_vars + state_info_vars_list
            if j == 0:
                # For computing the fast update for sampling
                self.policy.set_init_surr_obj(input_list, surr_objs)
                init_input_list = input_list

            all_surr_objs.append(surr_objs)

        obs_vars, action_vars, adv_vars = self.make_vars('test')
        surr_objs = []
        kls = []
        for i in range(self.meta_batch_size):
            dist_info_vars, _ = self.policy.updated_dist_info_sym(
                i,
                all_surr_objs[-1][i],
                obs_vars[i],
                params_dict=new_params[i])
            logli = dist.log_likelihood_sym(action_vars[i], dist_info_vars)
            surr_objs.append(-tf.reduce_mean(logli * adv_vars[i]))

            kls.append(dist.kl_sym(old_dist_info_vars[i], dist_info_vars))

        surr_obj = tf.reduce_mean(tf.stack(surr_objs, 0))
        mean_kl = tf.reduce_mean(tf.concat(kls, 0))
        max_kl = tf.reduce_max(tf.concat(kls, 0))
        input_list += obs_vars + action_vars + adv_vars

        if self.use_maml:
            self.optimizer.update_opt(loss=surr_obj,
                                      target=self.policy,
                                      inputs=input_list)
        else:  # baseline method of just training initial policy
            self.optimizer.update_opt(loss=tf.reduce_mean(
                tf.stack(all_surr_objs[0], 0)),
                                      target=self.policy,
                                      inputs=init_input_list)

        f_kl = tensor_utils.compile_function(
            inputs=input_list + old_dist_info_vars_list,
            outputs=[mean_kl, max_kl],
        )
        self.opt_info = dict(f_kl=f_kl, )
コード例 #24
0
    def __init__(
        self,
        name,
        env_spec,
        hidden_dim=32,
        feature_network=None,
        state_include_action=True,
        hidden_nonlinearity=tf.tanh,
        gru_layer_cls=L.GRULayer,
    ):
        """
        :param env_spec: A spec for the env.
        :param hidden_dim: dimension of hidden layer
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :return:
        """
        with tf.variable_scope(name):
            assert isinstance(env_spec.action_space, Discrete)
            Serializable.quick_init(self, locals())
            super(CategoricalGRUPolicy, self).__init__(env_spec)

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            if state_include_action:
                input_dim = obs_dim + action_dim
            else:
                input_dim = obs_dim

            l_input = L.InputLayer(shape=(None, None, input_dim), name="input")

            if feature_network is None:
                feature_dim = input_dim
                l_flat_feature = None
                l_feature = l_input
            else:
                feature_dim = feature_network.output_layer.output_shape[-1]
                l_flat_feature = feature_network.output_layer
                l_feature = L.OpLayer(
                    l_flat_feature,
                    extras=[l_input],
                    name="reshape_feature",
                    op=lambda flat_feature, input: tf.reshape(
                        flat_feature,
                        tf.pack([
                            tf.shape(input)[0],
                            tf.shape(input)[1], feature_dim
                        ])),
                    shape_op=lambda _, input_shape:
                    (input_shape[0], input_shape[1], feature_dim))

            prob_network = GRUNetwork(input_shape=(feature_dim, ),
                                      input_layer=l_feature,
                                      output_dim=env_spec.action_space.n,
                                      hidden_dim=hidden_dim,
                                      hidden_nonlinearity=hidden_nonlinearity,
                                      output_nonlinearity=tf.nn.softmax,
                                      gru_layer_cls=gru_layer_cls,
                                      name="prob_network")

            self.prob_network = prob_network
            self.feature_network = feature_network
            self.l_input = l_input
            self.state_include_action = state_include_action

            flat_input_var = tf.placeholder(dtype=tf.float32,
                                            shape=(None, input_dim),
                                            name="flat_input")
            if feature_network is None:
                feature_var = flat_input_var
            else:
                feature_var = L.get_output(
                    l_flat_feature,
                    {feature_network.input_layer: flat_input_var})

            self.f_step_prob = tensor_utils.compile_function(
                [
                    flat_input_var,
                    prob_network.step_prev_hidden_layer.input_var
                ],
                L.get_output([
                    prob_network.step_output_layer,
                    prob_network.step_hidden_layer
                ], {prob_network.step_input_layer: feature_var}))

            self.input_dim = input_dim
            self.action_dim = action_dim
            self.hidden_dim = hidden_dim

            self.prev_actions = None
            self.prev_hiddens = None
            self.dist = RecurrentCategorical(env_spec.action_space.n)

            out_layers = [prob_network.output_layer]
            if feature_network is not None:
                out_layers.append(feature_network.output_layer)

            LayersPowered.__init__(self, out_layers)
コード例 #25
0
    def update_opt(self,
                   loss,
                   target,
                   leq_constraint,
                   inputs,
                   extra_inputs=None,
                   constraint_name="constraint",
                   *args,
                   **kwargs):
        """
        :param loss: Symbolic expression for the loss function.
        :param target: A parameterized object to optimize over. It should implement methods of the
        :class:`rllab_maml.core.paramerized.Parameterized` class.
        :param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon.
        :param inputs: A list of symbolic variables as inputs, which could be subsampled if needed. It is assumed
        that the first dimension of these inputs should correspond to the number of data points
        :param extra_inputs: A list of symbolic variables as extra inputs which should not be subsampled
        :return: No return value.
        """

        inputs = tuple(inputs)
        if extra_inputs is None:
            extra_inputs = tuple()
        else:
            extra_inputs = tuple(extra_inputs)

        constraint_term, constraint_value = leq_constraint

        params = target.get_params(trainable=True)
        grads = tf.gradients(loss, xs=params)
        for idx, (grad, param) in enumerate(zip(grads, params)):
            if grad is None:
                grads[idx] = tf.zeros_like(param)
        flat_grad = tensor_utils.flatten_tensor_variables(grads)

        # f=KL-divergence and target is policy
        self._hvp_approach.update_opt(f=constraint_term,
                                      target=target,
                                      inputs=inputs + extra_inputs,
                                      reg_coeff=self._reg_coeff)

        self._target = target
        self._max_constraint_val = constraint_value
        self._constraint_name = constraint_name

        self._opt_fun = ext.lazydict(
            f_loss=lambda: tensor_utils.compile_function(
                inputs=inputs + extra_inputs,
                outputs=loss,
                log_name="f_loss",
            ),
            f_grad=lambda: tensor_utils.compile_function(
                inputs=inputs + extra_inputs,
                outputs=flat_grad,
                log_name="f_grad",
            ),
            f_constraint=lambda: tensor_utils.compile_function(
                inputs=inputs + extra_inputs,
                outputs=constraint_term,
                log_name="constraint",
            ),
            f_loss_constraint=lambda: tensor_utils.compile_function(
                inputs=inputs + extra_inputs,
                outputs=[loss, constraint_term],
                log_name="f_loss_constraint",
            ),
        )
コード例 #26
0
    def __init__(
        self,
        name,
        input_shape,
        output_dim,
        prob_network=None,
        hidden_sizes=(32, 32),
        hidden_nonlinearity=tf.nn.tanh,
        optimizer=None,
        tr_optimizer=None,
        use_trust_region=True,
        step_size=0.01,
        normalize_inputs=True,
        no_initial_trust_region=True,
    ):
        """
        :param input_shape: Shape of the input data.
        :param output_dim: Dimension of output.
        :param hidden_sizes: Number of hidden units of each layer of the mean network.
        :param hidden_nonlinearity: Non-linearity used for each layer of the mean network.
        :param optimizer: Optimizer for minimizing the negative log-likelihood.
        :param use_trust_region: Whether to use trust region constraint.
        :param step_size: KL divergence constraint for each iteration
        """
        Serializable.quick_init(self, locals())

        with tf.variable_scope(name):
            if optimizer is None:
                optimizer = LbfgsOptimizer(name="optimizer")
            if tr_optimizer is None:
                tr_optimizer = ConjugateGradientOptimizer()

            self.output_dim = output_dim
            self.optimizer = optimizer
            self.tr_optimizer = tr_optimizer

            if prob_network is None:
                prob_network = MLP(input_shape=input_shape,
                                   output_dim=output_dim,
                                   hidden_sizes=hidden_sizes,
                                   hidden_nonlinearity=hidden_nonlinearity,
                                   output_nonlinearity=tf.nn.softmax,
                                   name="prob_network")

            l_prob = prob_network.output_layer

            LayersPowered.__init__(self, [l_prob])

            xs_var = prob_network.input_layer.input_var
            ys_var = tf.placeholder(dtype=tf.float32,
                                    shape=[None, output_dim],
                                    name="ys")
            old_prob_var = tf.placeholder(dtype=tf.float32,
                                          shape=[None, output_dim],
                                          name="old_prob")

            x_mean_var = tf.get_variable(name="x_mean",
                                         shape=(1, ) + input_shape,
                                         initializer=tf.constant_initializer(
                                             0., dtype=tf.float32))
            x_std_var = tf.get_variable(name="x_std",
                                        shape=(1, ) + input_shape,
                                        initializer=tf.constant_initializer(
                                            1., dtype=tf.float32))

            normalized_xs_var = (xs_var - x_mean_var) / x_std_var

            prob_var = L.get_output(
                l_prob, {prob_network.input_layer: normalized_xs_var})

            old_info_vars = dict(prob=old_prob_var)
            info_vars = dict(prob=prob_var)

            dist = self._dist = Categorical(output_dim)

            mean_kl = tf.reduce_mean(dist.kl_sym(old_info_vars, info_vars))

            loss = -tf.reduce_mean(dist.log_likelihood_sym(ys_var, info_vars))

            predicted = tensor_utils.to_onehot_sym(
                tf.argmax(prob_var, dimension=1), output_dim)

            self.prob_network = prob_network
            self.f_predict = tensor_utils.compile_function([xs_var], predicted)
            self.f_prob = tensor_utils.compile_function([xs_var], prob_var)
            self.l_prob = l_prob

            self.optimizer.update_opt(loss=loss,
                                      target=self,
                                      network_outputs=[prob_var],
                                      inputs=[xs_var, ys_var])
            self.tr_optimizer.update_opt(loss=loss,
                                         target=self,
                                         network_outputs=[prob_var],
                                         inputs=[xs_var, ys_var, old_prob_var],
                                         leq_constraint=(mean_kl, step_size))

            self.use_trust_region = use_trust_region
            self.name = name

            self.normalize_inputs = normalize_inputs
            self.x_mean_var = x_mean_var
            self.x_std_var = x_std_var
            self.first_optimized = not no_initial_trust_region
コード例 #27
0
    def __init__(
        self,
        name,
        env_spec,
        hidden_dim=32,
        feature_network=None,
        state_include_action=True,
        hidden_nonlinearity=tf.tanh,
        learn_std=True,
        init_std=1.0,
        output_nonlinearity=None,
        lstm_layer_cls=L.LSTMLayer,
    ):
        """
        :param env_spec: A spec for the env.
        :param hidden_dim: dimension of hidden layer
        :param hidden_nonlinearity: nonlinearity used for each hidden layer
        :return:
        """
        with tf.variable_scope(name):
            Serializable.quick_init(self, locals())
            super(GaussianLSTMPolicy, self).__init__(env_spec)

            obs_dim = env_spec.observation_space.flat_dim
            action_dim = env_spec.action_space.flat_dim

            if state_include_action:
                input_dim = obs_dim + action_dim
            else:
                input_dim = obs_dim

            l_input = L.InputLayer(shape=(None, None, input_dim), name="input")

            if feature_network is None:
                feature_dim = input_dim
                l_flat_feature = None
                l_feature = l_input
            else:
                feature_dim = feature_network.output_layer.output_shape[-1]
                l_flat_feature = feature_network.output_layer
                l_feature = L.OpLayer(
                    l_flat_feature,
                    extras=[l_input],
                    name="reshape_feature",
                    op=lambda flat_feature, input: tf.reshape(
                        flat_feature,
                        tf.pack([
                            tf.shape(input)[0],
                            tf.shape(input)[1], feature_dim
                        ])),
                    shape_op=lambda _, input_shape:
                    (input_shape[0], input_shape[1], feature_dim))

            mean_network = LSTMNetwork(input_shape=(feature_dim, ),
                                       input_layer=l_feature,
                                       output_dim=action_dim,
                                       hidden_dim=hidden_dim,
                                       hidden_nonlinearity=hidden_nonlinearity,
                                       output_nonlinearity=output_nonlinearity,
                                       lstm_layer_cls=lstm_layer_cls,
                                       name="mean_network")

            l_log_std = L.ParamLayer(
                mean_network.input_layer,
                num_units=action_dim,
                param=tf.constant_initializer(np.log(init_std)),
                name="output_log_std",
                trainable=learn_std,
            )

            l_step_log_std = L.ParamLayer(
                mean_network.step_input_layer,
                num_units=action_dim,
                param=l_log_std.param,
                name="step_output_log_std",
                trainable=learn_std,
            )

            self.mean_network = mean_network
            self.feature_network = feature_network
            self.l_input = l_input
            self.state_include_action = state_include_action

            flat_input_var = tf.placeholder(dtype=tf.float32,
                                            shape=(None, input_dim),
                                            name="flat_input")
            if feature_network is None:
                feature_var = flat_input_var
            else:
                feature_var = L.get_output(
                    l_flat_feature,
                    {feature_network.input_layer: flat_input_var})

            self.f_step_mean_std = tensor_utils.compile_function(
                [
                    flat_input_var,
                    mean_network.step_prev_hidden_layer.input_var,
                    mean_network.step_prev_cell_layer.input_var
                ],
                L.get_output([
                    mean_network.step_output_layer, l_step_log_std,
                    mean_network.step_hidden_layer,
                    mean_network.step_cell_layer
                ], {mean_network.step_input_layer: feature_var}))

            self.l_log_std = l_log_std

            self.input_dim = input_dim
            self.action_dim = action_dim
            self.hidden_dim = hidden_dim

            self.prev_actions = None
            self.prev_hiddens = None
            self.prev_cells = None
            self.dist = RecurrentDiagonalGaussian(action_dim)

            out_layers = [mean_network.output_layer, l_log_std]
            if feature_network is not None:
                out_layers.append(feature_network.output_layer)

            LayersPowered.__init__(self, out_layers)