コード例 #1
0
ファイル: determine_dt.py プロジェクト: 153957/topaz
def determine_dt_for_pair(stations):
    """Determine and store dt for a pair of stations

    :param ref_station: reference station number to use as refernece
    :param station: station number to determine the dt for

    """
    path = DATA_PATH + 'dt_ref%d_%d.h5' % stations
    if os.path.exists(path):
        print 'dt data already exists for %d-%d' % stations
        return

    ref_station, station = stations
    try:
        with tables.open_file(PAIR_DATAPATH % tuple(sorted(stations)),
                              'r') as data:
            cq = CoincidenceQuery(data)
            ref_detector_offsets = Station(ref_station).detector_timing_offset
            detector_offsets = Station(station).detector_timing_offset
            for dt0, dt1 in monthrange((2004, 1), (2015, 9)):
                coins = cq.all(stations, start=dt0, stop=dt1, iterator=True)
                coin_events = cq.events_from_stations(coins, stations)
                ets, dt = determine_time_differences(coin_events, ref_station,
                                                     station,
                                                     ref_detector_offsets,
                                                     detector_offsets)
                store_dt(ref_station, station, ets, dt)
    except Exception as e:
        print 'Failed for %d, %d' % stations
        print e
        return
コード例 #2
0
    def find_coincidence(self, date, session):
        """Find coincidences for the given cluster on the given date

        Store the found coincidences and events in the database.
        Then return the number of found coincidences.

        """
        stations = Station.objects.filter(cluster=self.cluster,
                                          pcs__is_test=False).distinct().values_list('number', flat=True)
        path = get_esd_data_path(date)

        if not os.path.isfile(path):
            # No data file, so no coincidences
            return 0

        number_of_coincidences = 0

        # Get all coincidences containing stations in the requested cluster
        with tables.open_file(path, 'r') as data:
            cq = CoincidenceQuery(data)
            all_coincidences = cq.any(stations)
            coincidences = cq.events_from_stations(all_coincidences, stations, n=3)
            for coincidence in coincidences:
                # Todo: Double check for multiple events from same station,
                self.save_coincidence(coincidence, session)
                number_of_coincidences += 1

        return number_of_coincidences
コード例 #3
0
def analyse_reconstructions(data):
    cq = CoincidenceQuery(data)
    c_ids = data.root.coincidences.coincidences.read_where('s505 & (timestamp < 1366761600)', field='id')
    c_recs = cq.reconstructions.read_coordinates(c_ids)

    s_ids = data.root.hisparc.cluster_amsterdam.station_505.events.get_where_list('timestamp < 1366761600')
    s_recs = data.root.hisparc.cluster_amsterdam.station_505.reconstructions.read_coordinates(s_ids)

    assert len(c_recs) == len(s_recs)

    zenc = c_recs['zenith']
    azic = c_recs['azimuth']

    zens = s_recs['zenith']
    azis = s_recs['azimuth']

    high_zenith = (zenc > .2) & (zens > .2)

    for minn in [1, 2, 4, 8, 16]:
        filter = (s_recs['min_n'] > minn)

        length = len(azis.compress(high_zenith & filter))
        shifts501 = np.random.normal(0, .06, length)
        azicounts, x, y = np.histogram2d(azis.compress(high_zenith & filter) + shifts501,
                                         azic.compress(high_zenith & filter),
                                         bins=np.linspace(-np.pi, np.pi, 73))
        plota = Plot()
        plota.histogram2d(azicounts, np.degrees(x), np.degrees(y), type='reverse_bw', bitmap=True)
#         plota.set_title('Reconstructed azimuths for events in coincidence (zenith gt .2 rad)')
        plota.set_xlabel(r'$\phi_{505}$ [\si{\degree}]')
        plota.set_ylabel(r'$\phi_{Science Park}$ [\si{\degree}]')
        plota.set_xticks([-180, -90, 0, 90, 180])
        plota.set_yticks([-180, -90, 0, 90, 180])
        plota.save_as_pdf('azimuth_505_spa_minn%d' % minn)
コード例 #4
0
ファイル: analyse.py プロジェクト: 153957/topaz
def analyse(data, id):
    event_node = data.get_node('/station_99/events')
    print 'Total number of events: %d' % event_node.nrows
    cq = CoincidenceQuery(data)
    coincidences = cq.all(stations=[99])
    coincident_events = cq.events_from_stations(coincidences, [99], n=1)
    coincident_event_ids = [e[0][1]['event_id'] for e in coincident_events]
    event_ids = [i for i in range(event_node.nrows)
                 if i not in coincident_event_ids]
    events = event_node.read_coordinates(event_ids)
    coincident_events = event_node.read_coordinates(coincident_event_ids)
    print 'Total number of events not in coincidence: %d' % len(events)
    print 'Total number of events in coincidence: %d' % len(coincident_events)

    cph1 = coincident_events['pulseheights'][:, 0]
    cph2 = coincident_events['pulseheights'][:, 1]
    ph1 = events['pulseheights'][:, 0]
    ph2 = events['pulseheights'][:, 1]
    plot = Plot()
    bins = np.arange(0, 4000, 50)
    for ph, ls in [(cph1, 'black,dotted'), (cph2, 'red,dotted'),
                   (ph1, 'black'), (ph2, 'red')]:
        counts, bins = np.histogram(ph, bins=bins)
        plot.histogram(counts, bins, linestyle=ls)
    plot.set_xlimits(min=0, max=4000)
    plot.set_ylimits(min=.5)
    plot.set_ylabel('Counts')
    plot.set_xlabel('Pulseheight [ADC]')
    plot.save_as_pdf('muonlab_pulseheights_%d' % id)

    cdt = coincident_events['t2'] - coincident_events['t1']
    dt = events['t2'] - events['t1']
    plot = Plot()
    bins = np.arange(-100, 100, 2.5)
    for t, ls in [(dt, ''), (cdt, 'dotted')]:
        counts, bins = np.histogram(t, bins=bins)
        plot.histogram(counts, bins, linestyle=ls)
    plot.set_ylimits(min=0)
    plot.set_ylabel('Counts')
    plot.set_xlabel('Time difference [ns]')
    plot.save_as_pdf('muonlab_dt_%d' % id)
コード例 #5
0
ファイル: views.py プロジェクト: rajeevyadav/publicdb
def get_coincidences_from_esd_in_range(start, end, stations, n):
    """Get coincidences from ESD in time range.

    :param start: start of datetime range
    :param end: end of datetime range
    :param stations: station numbers
    :param n: minimum number of events in coincidence
    :yield: id, station number and event

    """
    id = -1
    for t0, t1 in single_day_ranges(start, end):
        try:
            NetworkSummary.objects.get(date=t0)
        except NetworkSummary.DoesNotExist:
            continue
        with tables.open_file(esd.get_esd_data_path(t0)) as f:
            try:
                cq = CoincidenceQuery(f)
                ts0 = datetime_to_gps(t0)
                ts1 = datetime_to_gps(t1)
                if stations:
                    coincidences = cq.at_least(stations, n, start=ts0, stop=ts1)
                    events = cq.events_from_stations(coincidences, stations, n)
                else:
                    coincidences = cq.timerange(start=ts0, stop=ts1)
                    events = cq.all_events(coincidences, n)
                for id, coin in enumerate(events, id + 1):
                    for number, event in coin:
                        yield id, number, event
            except (IOError, tables.NoSuchNodeError):
                continue
コード例 #6
0
def analyse_reconstructions(data):
    cq = CoincidenceQuery(data)
    total_count = cq.reconstructions.nrows
    succesful_direction = sum(~isnan(cq.reconstructions.col('zenith')))
    succesful_fraction = 100. * succesful_direction / total_count
    print '%.2f%% successful out of %d coincidences' % (succesful_fraction,
                                                        total_count)

    rec_d = cq.data.get_node('/coincidences', 'reconstructions_detectors')
    total_count_d = rec_d.nrows
    succesful_direction_d = sum(~isnan(rec_d.col('zenith')))
    succesful_fraction_d = 100. * succesful_direction_d / total_count_d
    print '%.2f%% successful out of %d coincidences' % (succesful_fraction_d,
                                                        total_count_d)
コード例 #7
0
def print_coincident_time_delta():

    cq = CoincidenceQuery(DATA, coincidence_group='/coincidences')
    coincidences = cq.coincidences
    events = [cq._get_events(c) for c in coincidences]

    cq_orig = CoincidenceQuery(DATA,
                               coincidence_group='/coincidences_original')
    coincidences_orig = cq_orig.coincidences
    events_orig = [cq_orig._get_events(c) for c in coincidences_orig]

    t3_501 = []
    t3_510 = []

    for event1, event2 in events:
        if event1[0] == 501:
            t3_501.append(event1[1]['t3'])
            t3_510.append(event2[1]['t3'])
        else:
            t3_501.append(event2[1]['t3'])
            t3_510.append(event1[1]['t3'])

    t3_501_orig = []
    t3_510_orig = []

    for event1, event2 in events_orig:
        if event1[0] == 501:
            t3_501_orig.append(event1[1]['t3'])
            t3_510_orig.append(event2[1]['t3'])
        else:
            t3_501_orig.append(event2[1]['t3'])
            t3_510_orig.append(event1[1]['t3'])

    t3_501 = array(t3_501)
    t3_510 = array(t3_510)
    t3_501_orig = array(t3_501_orig)
    t3_510_orig = array(t3_510_orig)

    filter = (t3_501_orig != -999) & (t3_510_orig != -999)

    dt3_501 = t3_501 - t3_501_orig
    dt3_510 = t3_510 - t3_510_orig
    dt = dt3_501 - dt3_510

    # Plot distribution
    plot = Plot()
    counts, bins = histogram(dt.compress(filter), bins=arange(-10.5, 11.5, 1))
    plot.histogram(counts, bins)
    plot.set_ylimits(min=0)
    plot.set_ylabel('counts')
    plot.set_xlabel(r'time delta [\si{\nano\second}]')
    plot.save_as_pdf('time_delta_501_510')
コード例 #8
0
def plot_map(data):
    cluster = data.root.coincidences._v_attrs['cluster']

    map = make_map(cluster)
    cq = CoincidenceQuery(data)
    cq.reconstructions = cq.data.get_node('/coincidences', 'recs_curved')
    cq.reconstructed = True

    for i, coincidence in enumerate(cq.coincidences.read_where('N > 6')):
        if i > 50:
            break
        coincidence_events = next(cq.all_events([coincidence]))
        reconstruction = cq._get_reconstruction(coincidence)
        display_coincidences(cluster, coincidence_events, coincidence,
                             reconstruction, map)
コード例 #9
0
def plot_reconstructions():
    print 'Plotting . . .'
    plot = Plot()
    bins = linspace(0, 90, 30)  # Degrees
    plot.set_ylimits(min=0)
    plot.set_xlimits(0, 90)
    plot.set_ylabel('counts')
    plot.set_xlabel(r'Angle between [\si{\degree}]')
    colors = ['black', 'red', 'green', 'blue']

    for i, c_group in enumerate([
            '/coincidences', '/coincidences_original',
            '/coincidences_501_original', '/coincidences_510_original'
    ]):
        cq = CoincidenceQuery(DATA, coincidence_group=c_group)
        coincidences = cq.all([501, 510], iterator=True)
        reconstructions = [cq._get_reconstructions(c) for c in coincidences]
        cq.finish()

        azi501 = []
        zen501 = []
        azi510 = []
        zen510 = []

        for rec1, rec2 in reconstructions:
            if rec1[0] == 501:
                azi501.append(rec1[1]['azimuth'])
                zen501.append(rec1[1]['zenith'])
                azi510.append(rec2[1]['azimuth'])
                zen510.append(rec2[1]['zenith'])
            else:
                azi501.append(rec2[1]['azimuth'])
                zen501.append(rec2[1]['zenith'])
                azi510.append(rec1[1]['azimuth'])
                zen510.append(rec1[1]['zenith'])

        azi501 = array(azi501)
        zen501 = array(zen501)
        azi510 = array(azi510)
        zen510 = array(zen510)

        # Compare angles between old and new
        d_angle = angle_between(zen501, azi501, zen510, azi510)
        print c_group, r'67\%% within %.1f degrees' % degrees(
            percentile(d_angle[isfinite(d_angle)], 67))
        plot.histogram(*histogram(degrees(d_angle), bins=bins),
                       linestyle=colors[i])
    plot.save_as_pdf('angle_between_501_510')
コード例 #10
0
ファイル: main.py プロジェクト: 153957/topaz
    509: [-24.8369, -23.0218, -20.6011, -24.3757]
}
COLORS = {
    501: 'black',
    502: 'red!80!black',
    503: 'blue!80!black',
    504: 'green!80!black',
    505: 'orange!80!black',
    506: 'pink!80!black',
    508: 'blue!40!black',
    509: 'red!40!black'
}

if __name__ == "__main__":
    with tables.open_file(COIN_DATA, 'r') as data:
        cq = CoincidenceQuery(data)
        coincidence = cq.coincidences[4323]
        coincidence_events = next(
            cq.events_from_stations([coincidence], STATIONS))
        reconstruction = cq._get_reconstruction(coincidence)
        core_x = reconstruction['x']
        core_y = reconstruction['y']

        plot = Plot()

        ref_extts = coincidence_events[0][1]['ext_timestamp']

        distances = arange(1, 370, 1)
        times = (2.43 * (1 + distances / 30.)**1.55) + 20
        plot.plot(distances, times, mark=None)
コード例 #11
0
def plot_distance_vs_delay(data):
    colors = {
        501: 'black',
        502: 'red!80!black',
        503: 'blue!80!black',
        504: 'green!80!black',
        505: 'orange!80!black',
        506: 'pink!80!black',
        508: 'blue!40!black',
        509: 'red!40!black',
        510: 'green!40!black',
        511: 'orange!40!black'
    }

    cq = CoincidenceQuery(data)
    cq.reconstructions = cq.data.get_node('/coincidences', 'recs_curved')
    cq.reconstructed = True

    cluster = data.root.coincidences._v_attrs['cluster']
    offsets = {
        s.number: [d.offset + s.gps_offset for d in s.detectors]
        for s in cluster.stations
    }

    front = CorsikaStationFront()
    front_r = np.arange(500)
    front_t = front.delay_at_r(front_r)

    for i, coincidence in enumerate(cq.coincidences.read_where('N > 6')):
        if i > 50:
            break
        coincidence_events = next(cq.all_events([coincidence]))
        reconstruction = cq._get_reconstruction(coincidence)

        core_x = coincidence['x']
        core_y = coincidence['y']

        plot = MultiPlot(2, 1)
        splot = plot.get_subplot_at(0, 0)
        rplot = plot.get_subplot_at(1, 0)

        splot.plot(front_r, front_t, mark=None)

        ref_extts = coincidence_events[0][1]['ext_timestamp']

        front_detect_r = []
        front_detect_t = []

        for station_number, event in coincidence_events:
            station = cluster.get_station(station_number)
            t = event_utils.relative_detector_arrival_times(
                event,
                ref_extts,
                offsets=offsets[station_number],
                detector_ids=DETECTOR_IDS)
            core_distances = []
            for i, d in enumerate(station.detectors):
                x, y, z = d.get_coordinates()
                core_distances.append(distance_between(core_x, core_y, x, y))
                t += d.get_coordinates()[-1] / c
            splot.scatter(core_distances,
                          t,
                          mark='o',
                          markstyle=colors[station_number])
            splot.scatter([np.mean(core_distances)], [np.nanmin(t)],
                          mark='*',
                          markstyle=colors[station_number])
            rplot.scatter(
                [np.mean(core_distances)],
                [np.nanmin(t) - front.delay_at_r(np.mean(core_distances))],
                mark='*',
                markstyle=colors[station_number])

        splot.set_ylabel('Relative arrival time [ns]')
        rplot.set_ylabel(r'Residuals')
        rplot.set_axis_options(r'height=0.25\textwidth')
        splot.set_ylimits(-10, 150)

        plot.set_xlimits_for_all(None, 0, 400)
        plot.set_xlabel('Distance from core [m]')
        plot.show_xticklabels(1, 0)
        plot.show_yticklabels_for_all()

        plot.save_as_pdf('front_shape/distance_v_time_%d_core' %
                         coincidence['id'])
コード例 #12
0
def analyse_reconstructions(data):
    cq = CoincidenceQuery(data)
    c_ids = data.root.coincidences.coincidences.read_where('s501', field='id')
    c_recs = cq.reconstructions.read_coordinates(c_ids)

    s_recs = data.root.hisparc.cluster_amsterdam.station_501.reconstructions

    zenc = c_recs['zenith']
    azic = c_recs['azimuth']

    zens = s_recs.col('zenith')
    azis = s_recs.col('azimuth')

    high_zenith = (zenc > .2) & (zens > .2)

    for minn in [1, 2, 4, 8, 16]:
        filter = (s_recs.col('min_n') > minn)

        length = len(azis.compress(high_zenith & filter))
        shifts501 = np.random.normal(0, .06, length)
        azicounts, x, y = np.histogram2d(azis.compress(high_zenith & filter) +
                                         shifts501,
                                         azic.compress(high_zenith & filter),
                                         bins=np.linspace(-np.pi, np.pi, 73))
        plota = Plot()
        plota.histogram2d(azicounts,
                          np.degrees(x),
                          np.degrees(y),
                          type='reverse_bw',
                          bitmap=True)
        # plota.set_title('Reconstructed azimuths for events in coincidence (zenith gt .2 rad)')
        plota.set_xlabel(r'$\phi_{501}$ [\si{\degree}]')
        plota.set_ylabel(r'$\phi_{Science Park}$ [\si{\degree}]')
        plota.set_xticks([-180, -90, 0, 90, 180])
        plota.set_yticks([-180, -90, 0, 90, 180])
        plota.save_as_pdf('azimuth_501_spa_minn%d' % minn)

        length = sum(filter)
        shifts501 = np.random.normal(0, .04, length)

        zencounts, x, y = np.histogram2d(zens.compress(filter) + shifts501,
                                         zenc.compress(filter),
                                         bins=np.linspace(0, np.pi / 3., 41))
        plotz = Plot()
        plotz.histogram2d(zencounts,
                          np.degrees(x),
                          np.degrees(y),
                          type='reverse_bw',
                          bitmap=True)
        # plotz.set_title('Reconstructed zeniths for station events in coincidence')
        plotz.set_xlabel(r'$\theta_{501}$ [\si{\degree}]')
        plotz.set_ylabel(r'$\theta_{Science Park}$ [\si{\degree}]')
        plotz.set_xticks([0, 15, 30, 45, 60])
        plotz.set_yticks([0, 15, 30, 45, 60])
        plotz.save_as_pdf('zenith_501_spa_minn%d' % minn)

        distances = angle_between(zens.compress(filter), azis.compress(filter),
                                  zenc.compress(filter), azic.compress(filter))
        counts, bins = np.histogram(distances, bins=np.linspace(0, np.pi, 91))
        plotd = Plot()
        plotd.histogram(counts, np.degrees(bins))
        sigma = np.degrees(np.percentile(distances[np.isfinite(distances)],
                                         67))
        plotd.set_label(r'67\%% within \SI{%.1f}{\degree}' % sigma)
        # plotd.set_title('Distance between reconstructed angles for station and cluster')
        plotd.set_xlabel('Angle between reconstructions [\si{\degree}]')
        plotd.set_ylabel('Counts')
        plotd.set_xlimits(min=0, max=90)
        plotd.set_ylimits(min=0)
        plotd.save_as_pdf('angle_between_501_spa_minn%d' % minn)
コード例 #13
0
            if max(trace) <= 10:
                trace = array(trace)
            else:
                trace = array(trace) / float(max(trace)) * 100
            trace = insert(trace, 0, 0)
            trace = append(trace, 0)
            plot.plot(t,
                      trace + (100 * j) + (500 * i),
                      mark=None,
                      linestyle=COLORS[j])
        tick_labels.append(station_number)
        tick_positions.append(500 * i)

    plot.set_yticks(tick_positions)
    plot.set_ytick_labels(tick_labels)
    plot.set_xlimits(min=-250, max=1300)
    plot.set_xlabel('t [\si{n\second}]')
    plot.set_ylabel('Signal strength')

    plot.save_as_pdf('traces_%d' % t0)


if __name__ == '__main__':
    map = make_map(CLUSTER)
    with tables.open_file(COIN_DATA, 'r') as data:
        cq = CoincidenceQuery(data)
        for coincidence in cq.coincidences:
            coincidence_events = next(
                cq.events_from_stations([coincidence], STATIONS))
            display_coincidences(coincidence_events, coincidence['id'], map)
コード例 #14
0
ファイル: offsets.py プロジェクト: 153957/topaz
def determine_station_timing_offsets(d, data):
    # First determine detector offsets for each station
    offsets = {}
    for s in [501, 510]:
        station_group = data.get_node('/hisparc/cluster_amsterdam/station_%d' % s)
        offsets[s] = determine_detector_timing_offsets2(station_group.events)

    ref_station = 501
    ref_d_off = offsets[ref_station]

    station = 510

    cq = CoincidenceQuery(data, '/coincidences')
    dt = []
    d_off = offsets[station]
    stations = [ref_station, station]
    coincidences = cq.all(stations)
    c_events = cq.events_from_stations(coincidences, stations)
    for events in c_events:
        # Filter for possibility of same station twice in coincidence
        if len(events) is not 2:
            continue
        if events[0][0] == ref_station:
            ref_event = events[0][1]
            event = events[1][1]
        else:
            ref_event = events[1][1]
            event = events[0][1]

        try:
            ref_t = min([ref_event['t%d' % (i + 1)] - ref_d_off[i]
                         for i in range(4)
                         if ref_event['t%d' % (i + 1)] not in ERR])
            t = min([event['t%d' % (i + 1)] - d_off[i]
                     for i in range(4)
                     if event['t%d' % (i + 1)] not in ERR])
        except ValueError:
            continue
        if (ref_event['t_trigger'] in ERR or event['t_trigger'] in ERR):
            continue
        dt.append((int(event['ext_timestamp']) -
                   int(ref_event['ext_timestamp'])) -
                  (event['t_trigger'] - ref_event['t_trigger']) +
                  (t - ref_t))

    bins = linspace(-150, 150, 200)
    y, bins = histogram(dt, bins=bins)
    x = (bins[:-1] + bins[1:]) / 2
    try:
        popt, pcov = curve_fit(gauss, x, y, p0=(len(dt), 0., 50))
        station_offset = popt[1]
    except RuntimeError:
        station_offset = 0.
    offsets[station] = [detector_offset + station_offset
                        for detector_offset in offsets[station]]
    print 'Station 501 - 510: %f (%f)' % (popt[1], popt[2])
    graph = Plot()
    graph.histogram(y, bins)
    graph.set_title('Time difference, between station 501-510')
    graph.set_label('%s' % d.replace('_', ' '))
    graph.set_xlimits(-150, 150)
    graph.set_ylimits(min=0)
    graph.set_xlabel('$\Delta t$')
    graph.set_ylabel('Counts')
    graph.save_as_pdf('%s' % d)