コード例 #1
0
def tester(fname_classifier, Jth):
    COST = save_obj.load_object('COST_obs.pkl')
    classifier = save_obj.load_object(fname_classifier)
    COSTkeys = list(COST.keys())

    tot = 0
    ptot = 0
    wrongs = 0
    for k in COSTkeys[1000000:1200000]:
        truth = COST[k][0] < Jth
        pred = classifier.predict([k[0] + k[1]])
        if pred != truth:
            wrongs += 1
        tot += truth
        ptot += pred
    print("tot: {}, ptot: {}, wrongs: {}".format(tot, ptot, wrongs))
    print("percentage correct: {}".format(1 - wrongs / 200000.))
コード例 #2
0
def precompute_reachable_sets(fname_V, fname_COST, fname_classifier, Jth):
    print("Memoizing reachable sets...")
    sys.setrecursionlimit(200000)
    if isinstance(fname_V, str):
        V = load_object(fname_V)
    else:
        V = fname_V
    if isinstance(fname_COST, str):
        COST = load_object(fname_COST)
    else:
        COST = fname_COST
    if isinstance(fname_classifier, str):
        classifier = load_object(fname_classifier)
    else:
        classifier = fname_classifier

    N = len(V)
    i=1
    for v in V:
        print("  Updating node {} / {}".format(i, N))
        v.N_out = reachable_set(v, V, Jth, COST, classifier)
        v.N_in = reachable_set(v, V, Jth, COST, classifier, forward=False)
        i+=1
    return V
コード例 #3
0
def trainer(count, n, Jth):
    COST = save_obj.load_object('COST_full_{}.pkl'.format(n))
    COSTkeys = list(COST.keys())
    print("total number of entries in COST dict:", len(COSTkeys))
    subdict = {k: COST[k] for k in COSTkeys[:count]}

    classifier = trainsvm(subdict, 0.05, Jth)
    tot = 0
    ptot = 0
    wrongs = 0
    for k in COSTkeys[100000:200000]:
        truth = COST[k][0] < Jth
        pred = classifier.predict([k[0] + k[1]])
        if pred != truth:
            wrongs += 1
            # print("Wrong.  ", k, ":", COST[k][0])
        tot += truth  # number of actual true values
        ptot += pred  # number of predicted true values
    print("Out of 100,000 experiments -- tot: {}, ptot: {}, wrongs: {}".format(
        tot, ptot, wrongs))
    print("percentage correct: {}".format(1 - wrongs / 100000.))

    save_obj.save_object(classifier,
                         'classifier{}node_J{}.pkl'.format(n, int(Jth)))
コード例 #4
0
NUM = 50

sys.setrecursionlimit(200000)

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

ax.set_xlabel('X')
ax.set_xlim3d(0, 10)
ax.set_ylabel('Y')
ax.set_ylim3d(0, 10)
ax.set_zlabel('Z')
ax.set_zlim3d(0, 10)

P = save_obj.load_object('P.pkl')

M = 3
N = 9
T = [1.7608794149125462, 1.5615551748592407, 1.1402720224000513]

for m in range(M):
    tt = np.linspace(0, T[m], num=NUM)
    xs = polyval(tt, P['x'][m*(N+1):(m+1)*(N+1)]).reshape(NUM,)
    ys = polyval(tt, P['y'][m*(N+1):(m+1)*(N+1)]).reshape(NUM,)
    zs = polyval(tt, P['z'][m*(N+1):(m+1)*(N+1)]).reshape(NUM,)
    yaws = polyval(tt, P['yaw'][m*(N+1):(m+1)*(N+1)]).reshape(NUM,)
    ax.plot(xs, ys, zs, lw=2, color='g', zorder=2)


plt.show()
コード例 #5
0
from save_obj import load_object
from kripke import kripke
from modelchecker import modelcheck

# MG has 2 regions, each of their best paths has an endnode in the other region
MG = load_object('MG.pkl')
MG.graphs = load_object('MGdoubleint2.pkl')
endnodes = load_object('endnodes_doubleint2.pkl')
Props = ['a', 'b', 'c']

K = kripke(MG, endnodes, Props)

print modelcheck(
    K,
    'nuZ.((a && muX.(((b || c) && Z) || <>X)) || (b && muY.(((a || c) && Z) || <>Y)) || (c && muY.(((a || b) && Z) || <>Y)))',
    Props, MG.graphs[0].V[0][0])

#nuZ.((a && muX.(((b || c) && Z) || <>X)) || (b && muY.(((a || c) && Z) || <>Y)) || (c && muY.(((a || b) && Z) || <>Y)))
コード例 #6
0
def planner(n, Jth, xinit, Xgoal, ax,
            plot_bool=False, all_lines=False, 
            plot_waypts=True, plot_smooth=True, no_smoothing=False):
    # --- setup environment --- #
    sys.setrecursionlimit(10*n*(n-1))

    Xgoal_pos = Xgoal[0]
    Xgoal_width = Xgoal[1]
    Xgoal_depth = Xgoal[2]
    Xgoal_height = Xgoal[3]
    g_intervals = goal_intervals(Xgoal)
    for o in OBS:
        draw_3d(*o, ax, color=(0.8, 0.2, 0.2, 1.))
    
    # --------------------------- #
    #     kinoFMT algorithm       #
    # --------------------------- #

    # --- initialize graph ---------------------------------------------------- #
    # reinitialize xinit to ensure it starts "fresh"
    xinit = Node(xinit.state)
    # ax.scatter(*xinit.state[:3], s=64, marker='*')  # plot initial state

    # load the presampled set of states for this (n, Jth) configuration, and
    #   add xinit to this set.
    V = save_obj.load_object('V_n{}_J{}.pkl'.format(int(n),int(Jth))) | {xinit}
    # COST roadmap (dictionary)
    COST = save_obj.load_object('COST_full_n{}_J{}.pkl'.format(int(n), int(Jth)))
    # classifier is a svm.SVC object which classifies a pair of states with Jth
    classifier = \
        save_obj.load_object('classifier{}node_J{}.pkl'.format(n, int(Jth)))
    
    #--------------------------------------------------------------------------
    # Remove any nodes that happen to lie in the goal region -- we only
    #   want to deal with goal nodes we sample from goal explicitly.
    #--------------------------------------------------------------------------
    # goal_set = set()
    # for v in V - {xinit}:
    #     within_goal = within_boundary(v, g_intervals)
    #     if within_goal:
    #         goal_set |= {v}
    #         print("goal state:", v.state)
    # V -= goal_set
    # print("Total removed from goal:", len(goal_set))
    #
    # # FOR DEBUGGING
    # tot_pred = 0
    # for q in goal_set:
    #     for v in V - {q}:
    #         p = np.append(v.state, q.state)
    #         pred = classifier.predict([p])
    #         if pred: tot_pred += 1
    # oldgoal = goal_set.pop()
    # goal_set |= {oldgoal}
    # print("Total predicted in N_in for removed goal state:", tot_pred)
    # print("N_in actual:", len(oldgoal.N_in))
    # print("iself?",oldgoal in oldgoal.N_in)
    # print("cost:", oldgoal.cost)
    # for q in goal_set:
    #     print("Removed:", q.state)
    #     for v in V - {xinit}:
    #         if q in v.N_out:
    #             v.N_out -= {q}
    #         if q in v.N_in:
    #             v.N_in -= {q}
    #--------------------------------------------------------------------------

    E = set([])

    H = {xinit}  # frontier of exploration
    W = V - {xinit}  # copy of V setminus {xinit} (unvisited)
    z = xinit  # point in the frontier, H

    stime = time.time()

    # find xinit reachable set
    V |= {xinit}
    xinit.N_out = reachable_set(xinit, V, Jth, COST, classifier)
    for v in xinit.N_out:
        # cost(xinit, v, COST)  # add cost to COST dictionary
        v.N_in |= {xinit}

    # find Xgoal reachable sets
    Vgoal = sample(n_goal, Xgoal_pos, Xgoal_width, Xgoal_depth, Xgoal_height, 
                   COST, ax=None, zero_vel=True)
    # # FOR DEBUGGING
    # for q in goal_set:
    #     replacement = Node(q.state)
    #     Vgoal |= {replacement}
    #     print("Added replacement:", replacement.state)
    for vg in Vgoal:
        vg.N_in = reachable_set(vg, V, Jth, COST, classifier, forward=False)
        print("goal state N_in contains", len(vg.N_in))
        # add vg to the outgoing nbhd of all nodes that can reach it
        for q in vg.N_in:
            # cost(q, vg, COST)  # add cost to COST dictionary
            q.N_out |= {vg}
    V |= Vgoal

    print("Running kinoFMT...")
    kinotimer = time.time()
    coltimer = 0. # accumulates collision-check time
    i = 0
    while not(within_boundary(z, g_intervals)):
        N_zout = reachable_set(z, V, Jth, COST, classifier)
        Xnear = N_zout & W  # set of as yet unreached nodes in reachable set
        for x in Xnear:
            # find backward reachable set of x
            N_xin = reachable_set(x, V, Jth, COST, classifier, forward=False)
            Ynear = N_xin & H  # set of frontier nodes that can reach x
            # find ymin if it exists, otherwise proceed to next x.
            if len(Ynear) == 0:
                continue
            ymin = random.choice(tuple(Ynear))  # initialize with random y
            ymin_x_cost = ymin.cost + cost(ymin, x, COST)
            for y in Ynear:
                y_x_cost = y.cost + cost(y, x, COST)
                if y_x_cost < ymin_x_cost:
                    ymin = y
                    ymin_x_cost = y_x_cost

            colcurtime = time.time()
            no_collision = collision_check_3d(ymin, x, OBS)
            coltimer += time.time() - colcurtime

            if no_collision:
                # ymin.children |= {x}
                x.parent = ymin
                x.cost = ymin_x_cost
                E |= set([Edge(ymin, x)])
                H |= set([x])
                W -= set([x])
                xs = (ymin.state[0], x.state[0])
                ys = (ymin.state[1], x.state[1])
                zs = (ymin.state[2], x.state[2])
                if all_lines:
                    ax.plot(xs, ys, zs, lw=1, zorder=1)
        H -= {z}
        if len(H) == 0:
            print("Failure")
            return -1, [], -1  # so as to not break when returning P,T,z
        # find argmin h in H of cost-to-come
        z = random.choice(tuple(H))
        for h in H:
            if h.cost < z.cost:
                z = h
        i += 1
    kinotime = time.time() - kinotimer

    # plt.axis('scaled')
    draw_3d(*Xgoal, ax)
    waypoints = draw_path(xinit, z, ax, plot_waypoints=plot_waypts)  # list of nodes from start to finish
    
    # create list T of optimal times for each segment/edge
    M = len(waypoints)-1
    T = []
    for m in range(M):
        n1 = waypoints[m]
        n2 = waypoints[m+1]
        p = (n1.state, n2.state)
        t = COST[p][1]
        T.append(t)
    print("M =", M)
    print("T =", T)

    if no_smoothing:
        if plot_bool:
            plt.show()
        return waypoints, T, z

    # --- trajectory smoothing --- #
    smoothtimer = time.time()
    print("")
    P, all_xs, all_ys, all_zs = smooth_traj(waypoints, T, N, beta,
                                            OBS, screen_intervals, NUM)

    print("")
    print("Time spent smoothing:", time.time() - smoothtimer)
    print("Time spent running kinoFMT:", kinotime)
    print("Total collision_check_3d computation time: {}\n".format(coltimer))
    print("Actual execution time: {}".format(time.time() - stime))
    print("-----"*4)
    
    if plot_smooth:
        ax.plot(all_xs, all_ys, all_zs, lw=4, color='g', zorder=1)#, linestyle='--')
    if plot_bool:
        # plt.axis('scaled')
        plt.show()

    return P, T, z