data = read("data/SABOR/sabor_HyperPro_2014.txt", data_start=35) header = read("data/SABOR/sabor_HyperPro_2014.txt", data_start=32, data_end=33) header["col1"][0] = "date" header = header[0].as_void() for key, new_key in zip(data.keys(), header): data.rename_column(key, new_key) data.remove_columns(get_keys_with_label(data, "sd")) data.remove_columns(get_keys_with_label(data, "Lu")) data.rename_column("lat", "Latitude") data.rename_column("lon", "Longitude") rename_columns(data, "Ed", "Ed_") rename_columns(data, "Rrs", "R_rs_") convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) map_data(data, data_label="SABOR-H", projection="gnom", lat_0=37, lon_0=-70, llcrnrlon=-77, urcrnrlon=-64,
files = list(folder.glob("Tara_HyperPro*.txt")) data = table.vstack([read(file, data_start=35) for file in files]) header = read(files[0], data_start=32, data_end=33) header["col1"][0] = "year" header = header[0].as_void() for key, new_key in zip(data.keys(), header): data.rename_column(key, new_key) data.remove_columns(get_keys_with_label(data, "LU")) data.rename_column("lat", "Latitude") data.rename_column("lon", "Longitude") rename_columns(data, "ES", "Ed_", exclude="None") rename_columns(data, "Rrs", "R_rs_", exclude="None") convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) map_data(data, data_label="TaraO", lon_0=0, resolution="i") plot_spectra(data, data_label="TaraO", alpha=0.1) write_data(data, label="TaraO")
from astropy import table from astropy import units as u from sba.plotting import plot_spectra, map_data from sba.io import read, write_data from sba.data_processing import split_spectrum, get_keys_with_label, remove_negative_R_rs, convert_to_unit, rename_columns Ed = read("data/SOP4/SO-P4_irrad.tab", data_start=142, header_start=141) Lu = read("data/SOP4/SO-P4_rad_up_40deg.tab", data_start=142, header_start=141) Ls = read("data/SOP4/SO-P4_sky_rad_40deg.tab", data_start=142, header_start=141) data = table.join(Ed, Lu, keys=["Date/Time"]) data = table.join(data, Ls, keys=["Date/Time"]) rename_columns(data, "Ed", "Ed", strip=True) rename_columns(data, "Lu", "Lu", strip=True) rename_columns(data, "Ls", "Ls", strip=True) convert_to_unit(data, "Ed", u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "Lu", u.microwatt / (u.centimeter**2 * u.nanometer * u.steradian), u.watt / (u.meter**2 * u.nanometer * u.steradian)) convert_to_unit(data, "Ls", u.watt / (u.meter**2 * u.nanometer * u.steradian)) Ed_keys, Lu_keys, Ls_keys = get_keys_with_label(data, "Ed", "Lu", "Ls") for Ed_k, Lu_k, Ls_k in zip(Ed_keys, Lu_keys, Ls_keys): Lw_k = Lu_k.replace("Lu", "Lw") Lw = data[Lu_k] - 0.028 * data[Ls_k] Lw.name = Lw_k data.add_column(Lw)
colnames_rrs = [f"R_rs_{wvl:.1f}" for wvl in wavelengths] colnames_rrs2 = [f"R_rs_err_{wvl:.1f}" for wvl in wavelengths] colnames = colnames + colnames_rrs + colnames_rrs2 for j, newname in enumerate(colnames, 1): Rrs.rename_column(f"col{j}", newname) Rrs.remove_columns(colnames_rrs2) Rrs.remove_columns([ 'Ratio (drho/rho, 750nm)', 'Ratio (dLsky/Lsky, 750nm)', 'Ratio (dLw/Lw, 750nm)', 'Ratio (dEd/Ed, 750nm)', 'Ratio (d(Lsk/Ed)/(Lsk/Ed), 750nm)' ]) data = table.join(Ed, Rrs, keys=["ID"]) rename_columns(data, "Ed [mW/m**2/nm] (", "Ed_", strip=True) convert_to_unit(data, "Ed", u.milliwatt / (u.meter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) R_rs_keys = get_keys_with_label(data, "R_rs") for R_rs_k in zip(R_rs_keys): # Convert R_w to R_rs data[R_rs_k] = data[R_rs_k] / np.pi data = add_Lw_from_Ed_Rrs(data) remove_negative_R_rs(data) map_data(data,
import numpy as np from astropy import table from astropy import units as u from sba.plotting import plot_spectra, map_data from sba.io import read, write_data from sba.data_processing import convert_to_unit, rename_columns, add_Lw_from_Ed_Rrs Ed = read("data/HE302/HE302_irrad.tab", data_start=186, header_start=185) Rrs = read("data/HE302/HE302_rrs.tab", data_start=186, header_start=185) data = table.join(Ed, Rrs, keys=["Event"]) rename_columns(data, "Ed", "Ed", strip=True) rename_columns(data, "Rrs", "R_rs", strip=True) convert_to_unit(data, "Ed", u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) remove_indices = [i for i, row in enumerate(data) if row["R_rs_800"] >= 0.003] data.remove_rows(remove_indices) print(f"Removed {len(remove_indices)} rows with values of R_rs(800 nm) >= 0.003") for key in ["Date/Time", "Latitude", "Longitude", "Altitude [m]"]: data.rename_column(f"{key}_1", key) data.remove_column(f"{key}_2") map_data(data, data_label="HE302", projection='gnom', lat_0=55, lon_0=0, llcrnrlon=-10, urcrnrlon=11, llcrnrlat=50.5, urcrnrlat=59.5, resolution="h", parallels=np.arange(40, 70, 2), meridians=np.arange(-20, 20, 2)) plot_spectra(data, data_label="HE302", alpha=0.15)
mean_data = [*data_table[0]["year", "jd"], row["time_GMT"], *means] data_table.add_row(mean_data) data_table.remove_rows(np.arange(len(data_table) - 1)) # Finally, load lat/lon *_, lon, lat = find_auxiliary_information_seabass(data_files[0]) data_table.add_column(table.Column(name="Longitude", data=[lon])) data_table.add_column(table.Column(name="Latitude", data=[lat])) data.append(data_table) print(j, row["Station"]) data = table.vstack(data) rename_columns("Es", "Ed_") rename_columns("Lsky", "Ls_") rename_columns("Lt", "Lt_") convert_to_unit(data, "Ed", u.microwatt / (u.centimeter**2 * u.nanometer), u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "Ls", u.microwatt / (u.centimeter**2 * u.nanometer * u.steradian), u.watt / (u.meter**2 * u.nanometer * u.steradian)) convert_to_unit(data, "Lt", u.microwatt / (u.centimeter**2 * u.nanometer * u.steradian), u.watt / (u.meter**2 * u.nanometer * u.steradian)) Ed_keys, Ls_keys, Lt_keys = get_keys_with_label(data, "Ed", "Ls", "Lt") for Ed_k, Ls_k, Lt_k in zip(Ed_keys, Ls_keys, Lt_keys): wavelength = int(Ed_k[3:])
wavelengths = np.arange(350, 1301, 1) Ld = read("data/SeaSWIR/SeaSWIR_ASD_Ldspec.tab", data_start=974, header_start=973) Ldkeys = get_keys_with_label(Ld, "Ld") for Ldkey, wvl in zip(Ldkeys, wavelengths): # multiply by pi to convert L to E (Mobley99) # divide by 1e5 for normalisation to W/m^2/nm (empirical) Ed = Ld[Ldkey] * np.pi / 1e5 Ed.name = f"Ed_{wvl}" Ld.add_column(Ed) Ld.remove_column(Ldkey) Ed = Ld # Units of Ld are not provided Rrs = read("data/SeaSWIR/SeaSWIR_ASD_Rw.tab", data_start=974, header_start=973) rename_columns(Rrs, "Refl (", "R_rs_", strip=True) R_rs_keys = get_keys_with_label(Rrs, "R_rs") for R_rs_k in R_rs_keys: # Convert R_w to R_rs Rrs[R_rs_k] = Rrs[R_rs_k] / np.pi data = table.join(Ed, Rrs, keys=["Station"]) convert_to_unit(data, "Ed", u.watt / (u.meter**2 * u.nanometer)) convert_to_unit(data, "R_rs", 1 / u.steradian) data = add_Lw_from_Ed_Rrs(data) for key in data.keys(): if key[-2:] == "_1": data.rename_column(key, key[:-2])