コード例 #1
0
ファイル: example_scan.py プロジェクト: KathleenGreen/sbmlsim
def run_parameter_scan(parallel=False):
    """Perform a parameter scan"""

    # [2] value scan
    scan_changeset = ChangeSet.scan_changeset('n',
                                              values=np.linspace(start=2,
                                                                 stop=10,
                                                                 num=8))
    tcsims = ensemble(sim=TimecourseSim([
        Timecourse(start=0, end=100, steps=100, changes={}),
        Timecourse(start=0, end=60, steps=100, changes={'[X]': 10}),
        Timecourse(start=0, end=60, steps=100, changes={'X': 10}),
    ]),
                      changeset=scan_changeset)
    print(tcsims[0])

    if parallel:
        simulator = SimulatorParallel(path=MODEL_REPRESSILATOR)
        results = simulator.timecourses(tcsims)
        assert isinstance(results, Result)

    else:
        simulator = SimulatorSerial(path=MODEL_REPRESSILATOR)
        results = simulator.timecourses(tcsims)
        assert isinstance(results, Result)

    return results
コード例 #2
0
def stepped_clamp(simulator, r):

    changes_init = pkpd.init_concentrations_changes(r, 'som', 0E-6)  # [0 nmol/L]
    tcsims = ensemble(
        TimecourseSim([
            Timecourse(start=0, end=60, steps=120, changes=changes_init),
            Timecourse(start=0, end=60, steps=120, changes={'Ri_som': 10.0E-6}),  # [mg/min],
            Timecourse(start=0, end=60, steps=120, changes={'Ri_som': 20.0E-6}),  # [mg/min],
            Timecourse(start=0, end=60, steps=120, changes={'Ri_som': 40.0E-6}),  # [mg/min],
            Timecourse(start=0, end=60, steps=120, changes={'Ri_som': 80.0E-6}),  # [mg/min],
        ]), ChangeSet.parameter_sensitivity_changeset(r, 0.1)
    )
    return simulator.timecourses(tcsims)
コード例 #3
0
def run_sensitivity():
    """ Parameter sensitivity simulations.

    :return:
    """
    simulator = Simulator(MODEL_REPRESSILATOR)

    # parameter sensitivity
    # FIXME: make work with parallel
    r = load_model(MODEL_REPRESSILATOR)
    changeset = ChangeSet.parameter_sensitivity_changeset(r)
    tc_sim = TimecourseSim([
        Timecourse(start=0, end=100, steps=100),
        Timecourse(start=0,
                   end=200,
                   steps=100,
                   model_changes={"boundary_condition": {
                       "X": True
                   }}),
        Timecourse(start=0,
                   end=100,
                   steps=100,
                   model_changes={"boundary_condition": {
                       "X": False
                   }}),
    ])
    tc_sims = ensemble(tc_sim, changeset=changeset)
    result = simulator.timecourses(tc_sims)

    # create figure
    fig, (ax1) = plt.subplots(nrows=1, ncols=1, figsize=(5, 5))
    fig.subplots_adjust(wspace=0.3, hspace=0.3)

    add_line(ax=ax1, data=result, xid='time', yid="X", label="X")
    add_line(ax=ax1,
             data=result,
             xid='time',
             yid="Y",
             label="Y",
             color="darkblue")
    add_line(ax=ax1,
             data=result,
             xid='time',
             yid="Z",
             label="Z",
             color="darkorange")

    ax1.legend()
    plt.show()
コード例 #4
0
def po_bolus(simulator, r):
    """ Oral bolus dose
    oral dose (single dose, at given start with given dose).
    Examples are the oral glucose tolerance test (OGTT) or the application of a drug orally,
    e.g., codeine, midazolam, caffeine or paracetamol.

    :return:
    """
    # set initial concentration of somatostatin in all blood compartments
    changes_init = pkpd.init_concentrations_changes(r, 'som', 0E-6)  # [0 nmol/L]

    # oral bolus dose
    # FIXME: dosing changesets
    changes_po_bolus = {
        'PODOSE_som': 10.0E-6,  # [mg]
    }

    # simulate
    tcsims = ensemble(
        TimecourseSim([
            Timecourse(start=0, end=1200, steps=600,
                       changes={
                           **changes_init,
                           **changes_po_bolus}
                       )
            ]),
        changeset=ChangeSet.parameter_sensitivity_changeset(r, 0.1)
    )
    return simulator.timecourses(tcsims)
コード例 #5
0
def test_plotting():
    r = load_model(MODEL_REPRESSILATOR)
    simulator = Simulator(MODEL_REPRESSILATOR)

    changeset = ChangeSet.parameter_sensitivity_changeset(r, sensitivity=0.5)
    tcsims = ensemble(
        TimecourseSim([
            Timecourse(start=0, end=400, steps=400),
        ]), changeset)
    result = simulator.timecourses(tcsims)

    # create figure
    fig, (ax1) = plt.subplots(nrows=1, ncols=1, figsize=(5, 5))
    fig.subplots_adjust(wspace=0.3, hspace=0.3)

    add_line(ax=ax1, data=result, xid='time', yid="X", label="X")
    add_line(ax=ax1,
             data=result,
             xid='time',
             yid="Y",
             label="Y",
             color="darkblue")

    ax1.legend()
    plt.show()
コード例 #6
0
def mix(simulator, r):
    """
    [5] combination experiments
    - somatostatin infusion + c-peptide bolus
    - hyperinsulinemic, euglycemic clamp
    """
    changes_init = pkpd.init_concentrations_changes(r, 'som', 0E-6)  # [0 nmol/L]
    tcsims = ensemble(
        TimecourseSim([
            Timecourse(start=0, end=60, steps=120, changes=changes_init),
            Timecourse(start=0, end=60, steps=120, changes={'IVDOSE_som': 10.0E-6}),
            Timecourse(start=0, end=60, steps=240, changes={'Ri_som': 10.0E-6}),  # [mg/min],
            Timecourse(start=0, end=60, steps=120, changes={'Ri_som': 10.0E-6, 'PODOSE_som': 10.0E-4}),
            Timecourse(start=0, end=120, steps=240, changes={'Ri_som': 0.0}),      # [mg/min],
        ]), ChangeSet.parameter_sensitivity_changeset(r, 0.1))

    return simulator.timecourses(tcsims)
コード例 #7
0
def iv_infusion(simulator, r):
    """ [3] constant infusion (for given period, tstart, tend)
        - somatostatin infusion
        - insulin infusion
        - glucose infusion
        - glucagon infusion

    :return:
    """
    changes_init = pkpd.init_concentrations_changes(r, 'som', 0E-6)  # [0 nmol/L]
    tcsims = ensemble(
        TimecourseSim([
            Timecourse(start=0, end=60, steps=120, changes=changes_init),
            Timecourse(start=0, end=120, steps=240, changes={'Ri_som': 10.0E-6}),  # [mg/min],
            Timecourse(start=0, end=120, steps=240, changes={'Ri_som': 0.0}),      # [mg/min],
        ]), ChangeSet.parameter_sensitivity_changeset(r, 0.1)
    )
    return simulator.timecourses(tcsims)
コード例 #8
0
def clamp(simulator, r):
    """
    clamping of substance (e.g. glucose, tstart, tend)
    - glucose clamping (euglycemic clamp)
    - insulin clamping (insulin clamp)

    :return:
    """
    changes_init = pkpd.init_concentrations_changes(r, 'som', 0E-6)  # [0 nmol/L]

    # FIXME: some bug in the concentrations and assignments
    tcsims = ensemble(
        TimecourseSim([
            Timecourse(start=0, end=60, steps=120, changes={**changes_init, **{'PODOSE_som': 1E-9}}),
            Timecourse(start=0, end=120, steps=240, model_changes={'boundary_condition': {"Ave_som": True}}), # clamp venous som
            Timecourse(start=0, end=120, steps=240, model_changes={'boundary_condition': {"Ave_som": False}}),   # release venous som,
        ]), ChangeSet.parameter_sensitivity_changeset(r, 0.1)
    )
    return simulator.timecourses(tcsims)
コード例 #9
0
def test_timecourse_simulation():
    simulator = Simulator(MODEL_REPRESSILATOR)

    s = simulator.timecourse(Timecourse(start=0, end=100, steps=100))
    assert s is not None

    s = simulator.timecourse(
        Timecourse(start=0, end=100, steps=100, changes={"PX": 10.0}))
    assert s is not None
    assert isinstance(s, pd.DataFrame)
    assert "time" in s
    assert len(s.time) == 101
    assert s.PX[0] == 10.0

    s = simulator.timecourse(
        TimecourseSim(timecourses=[
            Timecourse(start=0, end=100, steps=100, changes={"[X]": 10.0})
        ]))
    assert s is not None
コード例 #10
0
def run_clamp():
    def plot_result(result: Result, title: str = None) -> None:
        # create figure
        fig, (ax1) = plt.subplots(nrows=1, ncols=1, figsize=(5, 5))
        fig.subplots_adjust(wspace=0.3, hspace=0.3)

        plotting.add_line(ax=ax1, data=result, xid='time', yid="X", label="X")
        plotting.add_line(ax=ax1,
                          data=result,
                          xid='time',
                          yid="Y",
                          label="Y",
                          color="darkblue")

        if title:
            ax1.set_title(title)

        ax1.legend()
        plt.show()

    # reference simulation
    simulator = Simulator(MODEL_REPRESSILATOR)
    tcsim = TimecourseSim([
        Timecourse(start=0, end=400, steps=400, changes={"X": 10}),
        # clamp simulation
        Timecourse(start=0,
                   end=200,
                   steps=200,
                   model_changes={'boundary_condition': {
                       'X': True
                   }}),
        # free simulation
        Timecourse(start=0,
                   end=400,
                   steps=400,
                   model_changes={'boundary_condition': {
                       'X': False
                   }}),
    ])
    result = simulator.timecourses(tcsim)
    assert isinstance(result, Result)
    plot_result(result, "clamp experiment (400-600)")
コード例 #11
0
def example_multiple_actors():
    """Multiple independent simulator actors.

    Actors should not be created manually, use the Simulator
    classes for simulations.
    """
    # create ten Simulators.
    simulators = [SimulatorActor.remote(MODEL_REPRESSILATOR) for _ in range(16)]

    # define timecourse
    tcsim = TimecourseSim([
        Timecourse(start=0, end=100, steps=100),
        Timecourse(start=0, end=100, steps=100, changes={"X": 10, "Y": 20}),
    ])

    # run simulation on simulators
    tc_ids = [s.timecourse.remote(tcsim) for s in simulators]
    # collect results
    results = ray.get(tc_ids)
    return results
コード例 #12
0
def test_timecourse_combined():
    simulator = Simulator(MODEL_REPRESSILATOR)

    s = simulator.timecourse(simulation=TimecourseSim([
        Timecourse(start=0, end=100, steps=100),
        Timecourse(start=0,
                   end=50,
                   steps=100,
                   model_changes={"boundary_condition": {
                       "X": True
                   }}),
        Timecourse(start=0,
                   end=100,
                   steps=100,
                   model_changes={"boundary_condition": {
                       "X": False
                   }}),
    ]))
    assert isinstance(s, pd.DataFrame)
    assert "time" in s
    assert s.time.values[-1] == 250.0
コード例 #13
0
def example_single_actor():
    """ Creates a single stateful simulator actor and executes timecourse.

    Normally multiple actors are created which execute the simulation
    load together. Actors should not be created manually, use the Simulator
    classes for simulations.

    :return:
    """
    # Create single actor process
    sa = SimulatorActor.remote(MODEL_REPRESSILATOR)

    # run simulation
    tcsim = TimecourseSim([
        Timecourse(start=0, end=100, steps=100),
        Timecourse(start=0, end=100, steps=100, changes={"X": 10, "Y": 20}),
    ])
    tc_id = sa.timecourse.remote(tcsim)
    print("-" * 80)
    print(ray.get(tc_id))
    print("-" * 80)
コード例 #14
0
def test_timecourse_ensemble():
    changeset = [
        {
            "[X]": 10.0
        },
        {
            "[X]": 15.0
        },
        {
            "[X]": 20.0
        },
        {
            "[X]": 25.0
        },
    ]
    simulator = Simulator(MODEL_REPRESSILATOR)
    tcsims = ensemble(TimecourseSim([
        Timecourse(start=0, end=400, steps=400),
    ]),
                      changeset=changeset)
    result = simulator.timecourses(tcsims)
    assert isinstance(result, Result)
コード例 #15
0
def iv_bolus(simulator, r):
    """ [2] bolus injection (at given time tstart, with given dose and given injection time, e.g. 5-10 min)
        - c-peptide bolus
        - ivGTT (glucose bolus)
        - insulin injection
    """
    changes_init = pkpd.init_concentrations_changes(r, 'som', 0E-6)  # [0 nmol/L]
    changes_iv_bolus = {
        'IVDOSE_som': 10E-6,  # [mg]
    }
    p_changeset = ChangeSet.parameter_sensitivity_changeset(r, 0.1)

    tcsims = ensemble(
        TimecourseSim([
            Timecourse(start=0, end=1200, steps=600,
                       changes={
                           **changes_init,
                           **changes_iv_bolus}
                       )
        ]), p_changeset)

    return simulator.timecourses(tcsims)
コード例 #16
0
def test_simulation_parallel():
    tcsims = []

    tc_sim = TimecourseSim([
        Timecourse(
            start=0,
            end=100,
            steps=100,
            changes={
                'IVDOSE_som': 0.0,  # [mg]
                'PODOSE_som': 0.0,  # [mg]
                'Ri_som': 10.0E-6,  # [mg/min]
            })
    ])

    # collect multiple simulation definitions (see also the ensemble functions)
    nsim = 100
    for _ in range(nsim):
        tcsims.append(tc_sim)

    simulator = Simulator(path=MODEL_GLCWB, actor_count=15)

    results = simulator.timecourses(simulations=tcsims)
コード例 #17
0
def run_timecourse_examples():
    """ Run various timecourses. """
    simulator = Simulator(MODEL_REPRESSILATOR)

    # 1. simple timecourse simulation
    print("*** simple timecourse ***")
    tc_sim = TimecourseSim(Timecourse(start=0, end=100, steps=100))
    s1 = simulator.timecourses(tc_sim)
    print(tc_sim)

    # 2. timecourse with parameter changes
    print("*** parameter change ***")
    tc_sim = TimecourseSim(
        Timecourse(start=0, end=100, steps=100, changes={
            "X": 10,
            "Y": 200
        }))
    s2 = simulator.timecourses(tc_sim)
    print(tc_sim)

    # 3. combined timecourses
    print("*** combined timecourse ***")
    tc_sim = TimecourseSim([
        Timecourse(start=0, end=100, steps=100),
        Timecourse(start=0, end=100, steps=100, changes={
            "X": 10,
            "Y": 20
        }),
    ])
    s3 = simulator.timecourses(tc_sim)
    print(tc_sim)

    # 4. combined timecourses with model_change
    print("*** model change ***")
    tc_sim = TimecourseSim([
        Timecourse(start=0, end=100, steps=100),
        Timecourse(start=0,
                   end=50,
                   steps=100,
                   model_changes={"boundary_condition": {
                       "X": True
                   }}),
        Timecourse(start=0,
                   end=100,
                   steps=100,
                   model_changes={"boundary_condition": {
                       "X": False
                   }}),
    ])
    s4 = simulator.timecourses(tc_sim)
    print(tc_sim)

    # create figure
    fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1, ncols=4, figsize=(20, 5))
    fig.subplots_adjust(wspace=0.3, hspace=0.3)

    ax1.set_title("simple timecourse")
    ax2.set_title("parameter change")
    ax3.set_title("combined timecourse")
    ax4.set_title("model change")

    for s, ax in [(s1, ax1), (s2, ax2), (s3, ax3), (s4, ax4)]:
        df = s.frames[0]
        ax.plot(df.time, df.X, label="X")
        ax.plot(df.time, df.Y, label="Y")
        ax.plot(df.time, df.Z, label="Z")

    for ax in (ax1, ax2, ax3, ax4):
        ax.legend()
        ax.set_xlabel("time")
        ax.set_ylabel("concentration")
    plt.show()
コード例 #18
0
def example_parallel_timecourse(nsim=40, actor_count=15):
    """Execute multiple simulations with model in parallel.

    :param nsim: number of simulations
    :return:
    """
    tcsims = []

    tc_sim = TimecourseSim([
        Timecourse(start=0, end=100, steps=100,
                   changes={
                       'IVDOSE_som': 0.0,  # [mg]
                       'PODOSE_som': 0.0,  # [mg]
                       'Ri_som': 10.0E-6,  # [mg/min]
                   })
    ])

    # collect all simulation definitions (see also the ensemble functions)
    for _ in range(nsim):
        tcsims.append(tc_sim)

    def message(info, time):
        print(f"{info:<10}: {time:4.3f}")

    # load model once for caching (fair comparison)
    r = roadrunner.RoadRunner(MODEL_GLCWB)

    print("-" * 80)
    print(f"Run '{nsim}' simulations")
    print("-" * 80)

    simulator_defs = [
        {
            "key": "parallel",
            'simulator': SimulatorParallel,
            'kwargs': {'actor_count': actor_count}
        },
        {
            "key": "serial",
            'simulator': SimulatorSerial,
            'kwargs': {}
        },
    ]
    sim_info = []
    for sim_def in simulator_defs:
        key = sim_def['key']
        print("***", key, "***")
        Simulator = sim_def['simulator']
        kwargs = sim_def['kwargs']

        # run simulation (with model reading)
        start_time = time.time()
        # create a simulator with 16 parallel actors
        simulator = Simulator(path=MODEL_GLCWB, **kwargs)
        load_time = time.time()-start_time
        message(f"load", load_time)

        start_time = time.time()
        results = simulator.timecourses(simulations=tcsims)
        sim_time = time.time()-start_time
        total_time = load_time + sim_time
        message("simulate", sim_time)
        message("total", total_time)
        assert(len(results) == len(tcsims))

        time.sleep(3)

        # run parallel simulation (without model reading)
        start_time = time.time()
        results = simulator.timecourses(simulations=tcsims)
        repeat_time = time.time()-start_time
        message(f"repeat", repeat_time)
        assert (len(results) == len(tcsims))

        actor_count = kwargs.get('actor_count', 1)
        times = {
            "load": load_time,
            "simulate": sim_time,
            "total": total_time,
            "repeat": repeat_time,
        }
        sim_info.extend([{
                "key": key,
                "nsim": nsim,
                "actor_count": actor_count,
                "time_type": k,
                "time": v,
            } for (k, v) in times.items()])

        print("-" * 80)

    return sim_info