コード例 #1
0
ファイル: SCALE.py プロジェクト: kridsadakorn/SCALE
                                            header=None)
            pd.Series(dataset.barcode).to_csv(imputed_dir + 'barcode.txt',
                                              sep='\t',
                                              index=False,
                                              header=None)
        elif args.impute:
            print("Saving imputed data")
            recon_x = pd.DataFrame(recon_x.T,
                                   index=dataset.peaks,
                                   columns=dataset.barcode)
            recon_x.to_csv(os.path.join(outdir, 'imputed_data.txt'), sep='\t')

#     torch.save(model.to('cpu').state_dict(), os.path.join(outdir, 'model.pt')) # save model

#     if not args.no_tsne:
    print("Plotting embedding")
    if args.reference:
        ref = pd.read_csv(args.reference, sep='\t', header=None,
                          index_col=0)[1]
        labels = ref.reindex(dataset.barcode, fill_value='unknown')
    else:
        labels = pred
    plot_embedding(feature,
                   labels,
                   method=args.emb,
                   save=os.path.join(outdir, 'emb_{}.pdf'.format(args.emb)),
                   save_emb=os.path.join(outdir,
                                         'emb_{}.txt'.format(args.emb)))
#         plot_embedding(feature, labels,
#                        save=os.path.join(outdir, 'tsne.pdf'), save_emb=os.path.join(outdir, 'tsne.txt'))
コード例 #2
0
ファイル: SCALE.py プロジェクト: xiachenrui/SCALE
            
    # 3. imputed data
    if args.impute or args.binary:
        recon_x = model.encodeBatch(testloader, device, out='x', transforms=[normalizer.inverse_transform])
        if args.binary:
            import scipy
            print("Saving binary imputed data")
            recon_x = binarization(recon_x, dataset.data).T
            imputed_dir = outdir+'/binary_imputed/'
            os.makedirs(imputed_dir, exist_ok=True)
            scipy.io.mmwrite(imputed_dir+'count.mtx', recon_x)
            pd.Series(dataset.peaks).to_csv(imputed_dir+'peak.txt', sep='\t', index=False, header=None)
            pd.Series(dataset.barcode).to_csv(imputed_dir+'barcode.txt', sep='\t', index=False, header=None)
        elif args.impute:
            print("Saving imputed data")
            recon_x = pd.DataFrame(recon_x.T, index=dataset.peaks, columns=dataset.barcode)
            recon_x.to_csv(os.path.join(outdir, 'imputed_data.txt'), sep='\t') 
        
#     torch.save(model.to('cpu').state_dict(), os.path.join(outdir, 'model.pt')) # save model
    
    if not args.no_tsne:
        print("Plotting tSNE embedding")
        if args.reference:
            ref = pd.read_csv(args.reference, sep='\t', header=None, index_col=0)[1]
            labels = ref.reindex(dataset.barcode, fill_value='unknown')
        else:
            labels = pred
        plot_embedding(feature, labels, 
                       save=os.path.join(outdir, 'tsne.pdf'), save_emb=os.path.join(outdir, 'tsne.txt'))