コード例 #1
0
 def compute_spatial_information(rds, which):
     data = SessionData(rds=rds)
     score = SpatialInformationScore(random=False,
                                     fixed_spacing=0.5,
                                     min_offset=15.0,
                                     reverse_for_shuffle=True,
                                     measure=which,
                                     x_bins=48)
     res = []
     for tc in sorted(data.clusts.keys()):
         cell_res = dict(rds=rds, tc=tc)
         cluster = data.cluster_data(tc)
         cell_res['I'] = score.compute(data, cluster)
         cell_res['p'] = score.pval(data, cluster)
         cell_res['N_running'] = cluster.N_running
         res.append(cell_res)
     return res
コード例 #2
0
    def create_scan_cell_table(self, scan_phase='scan'):
        """For every scan–cell pair, compute the relative index of cell firing that
        occurred during the scan and previous cell firing on the track
        """
        scan_table_description = {
            'id': tb.UInt32Col(pos=1),
            'scan_id': tb.UInt16Col(pos=2),
            'rat': tb.UInt16Col(pos=3),
            'day': tb.UInt16Col(pos=4),
            'session': tb.UInt16Col(pos=5),
            'session_start_angle': tb.FloatCol(pos=6),
            'session_end_angle': tb.FloatCol(pos=7),
            'tc': tb.StringCol(itemsize=8, pos=8),
            'type': tb.StringCol(itemsize=4, pos=9),
            'expt_type': tb.StringCol(itemsize=4, pos=10),
            'area': tb.StringCol(itemsize=4, pos=11),
            'subdiv': tb.StringCol(itemsize=4, pos=12),
            'duration': tb.FloatCol(pos=13),
            'magnitude': tb.FloatCol(pos=14),
            'angle': tb.FloatCol(pos=15)
        }

        def add_scan_index_column_descriptors(descr):
            pos = 16
            for name in ScanIndex.AllNames:
                descr[name] = tb.FloatCol(pos=pos)
                pos += 1

        add_scan_index_column_descriptors(scan_table_description)

        data_file = self.get_data_file(mode='a')
        scan_cell_table = create_table(data_file,
                                       '/',
                                       'scan_cell_info',
                                       scan_table_description,
                                       title='Metadata for Scan-Cell Pairs')
        scan_cell_table._v_attrs['scan_phase'] = scan_phase
        row = scan_cell_table.row
        row_id = 0

        scans_table = get_node('/behavior', 'scans')
        sessions_table = get_node('/metadata', 'sessions')
        tetrodes_table = get_node('/metadata', 'tetrodes')

        cornu_ammonis_query = '(area=="CA1")|(area=="CA3")'
        hippocampal_datasets = unique_datasets('/metadata',
                                               'tetrodes',
                                               condn=cornu_ammonis_query)

        quality_place_cells = AND(get_min_quality_criterion(self.min_quality),
                                  PlaceCellCriteria)

        index = ScanIndex(scan_phase=scan_phase)

        for dataset in hippocampal_datasets:
            dataset_query = '(rat==%d)&(day==%d)' % dataset

            hippocampal_tetrodes = unique_values(
                tetrodes_table,
                column='tt',
                condn='(%s)&(%s)' % (dataset_query, cornu_ammonis_query))
            cluster_criteria = AND(
                quality_place_cells,
                get_tetrode_restriction_criterion(hippocampal_tetrodes))

            for maze in get_maze_list(*dataset):
                rds = dataset + (maze, )
                session = SessionData(rds=rds)
                place_cells = session.get_clusters(cluster_criteria)
                session_start_angle = np.median(
                    session.trajectory.alpha_unwrapped[:5])
                session_end_angle = np.median(
                    session.trajectory.alpha_unwrapped[-5:])

                self.out('Computing scan index for %s...' %
                         session.data_group._v_pathname)

                for scan in scans_table.where(session.session_query):
                    self.out.printf('|', color='cyan')

                    for cell in place_cells:
                        cluster = session.cluster_data(cell)

                        tt, cl = parse_cell_name(cluster.name)
                        tetrode = get_unique_row(
                            tetrodes_table, '(rat==%d)&(day==%d)&(tt==%d)' %
                            (rds[0], rds[1], tt))

                        row['id'] = row_id
                        row['scan_id'] = scan['id']
                        row['rat'], row['day'], row['session'] = rds
                        row['session_start_angle'] = session_start_angle
                        row['session_end_angle'] = session_end_angle
                        row['tc'] = cluster.name
                        row['type'] = session.attrs['type']
                        row['expt_type'] = get_unique_row(
                            sessions_table, session.session_query)['expt_type']
                        row['area'] = tetrode['area']
                        row['subdiv'] = tetrode['area'] + tetrode['subdiv'][:1]
                        row['angle'] = session.F_('alpha_unwrapped')(
                            session.T_(scan['start']))
                        row['duration'] = scan['duration']
                        row['magnitude'] = scan['magnitude']

                        for index_name in ScanIndex.AllNames:
                            row[index_name] = index.compute(
                                index_name, session, scan, cluster)

                        self.out.printf('.', color='green')
                        row_id += 1
                        row.append()

                        if row_id % 100 == 0:
                            scan_cell_table.flush()

                self.out.printf('\n')

        scan_cell_table.flush()
        self.out('Finished creating %s.' % scan_cell_table._v_pathname)
コード例 #3
0
#!/usr/bin/env python

from pylab import *
import scanr.tracking
from scanr.session import SessionData
from ..tools.stats import KT_estimate
from ..tools.filters import circular_blur
import numpy as np

reload(scanr.tracking)
from scanr.tracking import SpatialInformationScore

data = SessionData(rds=(97, 6, 2))
cluster = data.cluster_data((1, 2))

score = SpatialInformationScore(measure='olypher',
                                x_bins=48,
                                reverse_for_shuffle=True,
                                random=False,
                                fixed_spacing=0.5,
                                min_offset=30.0)

H_xk = score.H_xk(data, cluster)
P_k = KT_estimate(H_xk.sum(axis=0))
P_k_x = (H_xk.astype('d') + 0.5) / (H_xk.sum(axis=1)[:, np.newaxis] +
                                    0.5 * H_xk.shape[1])
I_pos = np.sum(P_k_x * np.log2(P_k_x / P_k), axis=1)
I = circular_blur(I_pos, 360. / score.x_bins)

print I.max()