def test_change_functions(self): """ Tests gen.b_w_from_abs_change and gen.counts_from_first Returns ------- boolean -- all tests were passed or not """ np.random.seed(1234) correct = True counts_before = np.array([600, 400]) abs_change = 100 n_total = 1000 K = 2 b_0 = 600 b, w = gen.b_w_from_abs_change(counts_before, abs_change, n_total) if any(np.abs(b - [-0.51082562, -0.91629073]) > 1e-5): print("gen.b_w_from_abs_change: b not correct!") correct = False if any(np.abs(w - [0.44183275, 0.]) > 1e-5): print("gen.b_w_from_abs_change: b not correct!") correct = False b_2 = gen.counts_from_first(b_0, n_total, K) if not np.array_equal(b_2, [600., 400.]): print("gen.counts_from_first not correct!") correct = False self.assertTrue(correct)
pd.set_option('display.max_columns', 500) pd.set_option('display.max_rows', 500) sns.set_style("ticks") #%% importlib.reload(ana) # Get data path = "C:\\Users\\Johannes\\Documents\\Uni\\Master's_Thesis\\compositionalDiff-johannes_tests_2\\data\\overall_benchmark" #%% # Find relations between numerical values and composition/increase vectors b = [] for y1_0 in [20, 30, 50, 75, 115, 180, 280, 430, 667, 1000]: b_i = np.round(gen.counts_from_first(y1_0, 5000, 5), 3) b.append(np.round(np.log(b_i / 5000), 2)) print(b) b_counts = dict(zip([b_i[0] for b_i in b], [20, 30, 50, 75, 115, 180, 280, 430, 667, 1000])) b2 = [] for y1_0 in [20, 30, 50, 75, 115, 180, 280, 430, 667, 1000]: b_i = np.round(gen.counts_from_first(y1_0, 5000, 5), 3) b2.append(b_i) b_w_dict = {} i = 0 w_all = [] for b_i in b2: b_t = np.round(np.log(b_i / 5000), 3)
from scdcdm.util import data_generation as gen np.random.seed(1234) # General parameters cases = [1] K = [5] n_samples = [[i + 1, j + 1] for i in range(10) for j in range(10)] n_total = [5000] num_results = [2e4] # Get Parameter tuples: b: base composition; w: effect b = [] for y1_0 in [115, 280, 1000]: b.append(np.round(gen.counts_from_first(y1_0, 5000, 5), 3)) b_w_dict = {} i = 0 for b_i in b: b_t = np.round(np.log(b_i / 5000), 3) w_t = [] for change in [-10, -50, -100]: _, w = gen.b_w_from_abs_change(b_i, change, 5000) w_t.append(np.round(w, 3)) b_w_dict[i] = (b_t, w_t) i += 1 #%% # Create bash script to execute run_one_job.py count = 0