コード例 #1
0
ファイル: main.py プロジェクト: omahaDonorLD/DeploNet
def only_local(option, f):

    knowledge = 0
    iterations_local = 50  # number of trials
    scenarios.generate_victim_positions_traces()
    scenarios.partial_knowledge_generation(knowledge)

    list_best_individuals = list()
    list_best_fitness = list()
    list_evolution_max = list()
    list_best_time = list()

    for i in range(0, iterations_local):
        list_drones = quality.init(
            global_variables.num_drones)  # random selection
        global_variables.partial = 1
        result_global = quality.evaluate(list_drones)
        global_variables.partial = 1  # we evaluate the hill climbing

        type_global = "Genetic Algorithm"
        if option == "Hill":
            type_local = "Hill Climbing"
            list_drones_climbing, records = local.hill_climbing(
                list_drones, result_global)
            list_best_individuals.append(list_drones_climbing)
            #list_best_time.append(best_time)
            q, = quality.evaluate(list_drones_climbing)
            list_best_fitness.append(q)
            list_evolution_max.append(records)

    length = len(list_best_fitness)
    mean = sum(list_best_fitness) / length
    sum2 = sum(x * x for x in list_best_fitness)
    std = abs(sum2 / length - mean**2)**0.5

    index = miscelleneous.find_max(list_best_fitness)

    f.write(type_local)
    f.write("\n")
    f.write("Results \n")
    f.write("Max, Min, Mean, Std \n")
    f.write(
        str(max(list_best_fitness)) + "," + str(min(list_best_fitness)) + "," +
        str(mean) + "," + str(std))
    f.write(str(list_best_fitness))
    plots.print_drones_data(list_best_individuals[index], f)
    plots.evolution_local(list_evolution_max[index], type_local)
    plots.positions(list_drones, list_best_individuals[index], type_global,
                    type_local)
コード例 #2
0
def ground_nodes():
    """ It plots the solution"""

    k_values = [0.4, 0.6, 0.8, 1]
    list_x_global = [list() for i in range(len(k_values))]
    list_y_global = [list() for i in range(len(k_values))]
    scenarios.generate_victim_positions_traces()
    for i, k in enumerate(k_values):
        #list_victims_partical_victims = []
        #list_partial_victims = []
        list_x = list()
        list_y = list()
        scenarios.partial_knowledge_generation(k)
        for j in global_variables.list_partial_victims:
            list_x.append(j.node_x)
            list_y.append(j.node_y)
        list_x_global[i].append(list_x)
        list_y_global[i].append(list_y)

    # plotting drones connectivity
    fig = plt.figure(figsize=(13, 10), dpi=300)
    ax1 = fig.add_subplot(2, 2, 1)
    ax1.scatter(list_x_global[0],
                list_y_global[0],
                c='k',
                label="known victims",
                marker='o')
    ax1.set_title("a) 50 ground nodes", fontsize=12)
    ax1.set_xlabel("X [m]", fontsize=11)
    ax1.set_ylabel("Y [m]", fontsize=11)
    ax1.axis([-50, 1050, -50, 1050])
    ax1.grid(True)

    ax2 = fig.add_subplot(2, 2, 2)
    ax2.scatter(list_x_global[1],
                list_y_global[1],
                c='k',
                label="known victims",
                marker='o')
    ax2.set_title("b) 75 ground nodes", fontsize=12)
    ax2.set_xlabel("X [m]", fontsize=11)
    ax2.set_ylabel("Y [m]", fontsize=11)
    ax2.axis([-50, 1050, -50, 1050])
    ax2.grid(True)

    ax3 = fig.add_subplot(2, 2, 3)
    ax3.scatter(list_x_global[2],
                list_y_global[2],
                c='k',
                label="known victims",
                marker='o')
    ax3.set_title("c) 100 ground nodes", fontsize=12)
    ax3.set_xlabel("X [m]", fontsize=11)
    ax3.set_ylabel("Y [m]", fontsize=11)
    ax3.axis([-50, 1050, -50, 1050])
    ax3.grid(True)

    ax4 = fig.add_subplot(2, 2, 4)
    ax4.scatter(list_x_global[3],
                list_y_global[3],
                c='k',
                label="known victims",
                marker='o')
    ax4.set_title("d) 125 ground nodes", fontsize=12)
    ax4.set_xlabel("X [m]", fontsize=11)
    ax4.set_ylabel("Y [m]", fontsize=11)
    ax4.axis([-50, 1050, -50, 1050])
    ax4.grid(True)

    fig.savefig("Positions.png")
コード例 #3
0
def positions_from_file(fil, num, k, nodes, UAVs, fig):
    """ It plots the solution"""
    #global list_victim
    #global list_partial_victims
    f = open(fil, 'r')
    scenarios.generate_victim_positions_traces()
    scenarios.partial_knowledge_generation(k)
    #print list_victims

    list_drones = list()
    for line in f:
        fields = line.split(",")
        list_drones.append(
            global_variables.Drone(int(fields[0]), float(fields[1]),
                                   float(fields[2])))

    for i in list_drones:
        print(i.id, i.node_x, i.node_y)

    #CO= quality.evaluate_coverage(list_drones)
    #G= quality.create_drones_graph(list_drones)
    #print quality.check_graph_connectivity(G)
    #for i in list_drones:
    #	print i.neighbordrones

    #F= quality.evaluate_weighted(list_drones)
    CO = quality.evaluate_coverage(list_drones)
    print("coverage", CO)
    #FTO= quality.evaluate_tolerance(list_drones)
    #print FTO
    #RO= quality.evaluate_redundancy(list_drones)
    #print "redundancy", RO

    ground_x = list()  # victims' positions
    ground_y = list()

    ground_x_covered = list()  # victims' positions
    ground_y_covered = list()

    UAV_x = list()  # drones' positions
    UAV_y = list()

    UAV_ground_x = list()  # links among drones and victims
    UAV_ground_y = list()

    UAV_UAV_x = list()  # links among drones
    UAV_UAV_y = list()

    for i in global_variables.list_partial_victims:
        ground_x.append(i.node_x)
        ground_y.append(i.node_y)

    for j in list_drones:
        UAV_x.append(j.node_x)
        UAV_y.append(j.node_y)

    #print UAV_x, UAV_y
    #print ground_x, ground_y
    UAV_ground_x, UAV_ground_y, ground_x_covered, ground_y_covered = plot_links(
        list_drones, 1)
    UAV_UAV_x, UAV_UAV_y = plot_links_drones(list_drones)
    #print UAV_ground_x

    # plotting drones connectivity
    #fig = plt.figure(figsize= (10,20), dpi = 300)
    ax1 = fig.add_subplot(4, 2, num)
    #s1= ax1.scatter(ground_x, ground_y, c = 'y', label = "ground_nodes", marker = 'o')
    s1 = ax1.scatter(UAV_x, UAV_y, c='r', label="UAV", marker='x')
    for i in range(0, len(UAV_UAV_x)):
        if i % 2 == 0:
            x1 = UAV_UAV_x[i]
            x11 = UAV_UAV_x[i + 1]
            y1 = UAV_UAV_y[i]
            y11 = UAV_UAV_y[i + 1]
            ax1.plot([x1, x11], [y1, y11],
                     'r--',
                     label="UAV-UAV links",
                     marker='_')
    ax1.set_xlabel("X [m]", fontsize=11)
    ax1.set_ylabel("Y [m]", fontsize=11)
    ax1.axis([-50, 1050, -50, 1050])
    ax1.set_title(UAVs, fontsize=12)
    ax1.grid("on")

    ax2 = fig.add_subplot(4, 2, num + 1)
    s2 = ax2.scatter(ground_x,
                     ground_y,
                     c='c',
                     label="ground_nodes",
                     marker='x')
    s3 = ax2.scatter(ground_x_covered,
                     ground_y_covered,
                     c='m',
                     label="ground_nodes",
                     marker='x')
    ax2.scatter(UAV_x, UAV_y, c='r', label="UAV", marker='x')
    for i in range(0, len(UAV_ground_x)):
        if i % 2 == 0:
            x1 = UAV_ground_x[i]
            x11 = UAV_ground_x[i + 1]
            y1 = UAV_ground_y[i]
            y11 = UAV_ground_y[i + 1]
            ax2.plot([x1, x11], [y1, y11],
                     'g--',
                     label="UAV-ground links",
                     marker='_')
    ax2.set_xlabel("X [m]", fontsize=11)
    ax2.set_ylabel("Y [m]", fontsize=11)
    ax2.axis([-50, 1050, -50, 1050])
    ax2.set_title(nodes, fontsize=12)
    ax2.grid("on")
    #l = ["unknown victims", "known victims", "drones"]
    #c = ['b', 'k', 'r', 'y', 'g', 'r']
    #m = ['o', 'o', 'o', '_', '_', '_']
    UAV_links = mlines.Line2D([], [],
                              color='red',
                              linestyle='--',
                              label='Blue stars')
    GN_links = mlines.Line2D([], [],
                             color='green',
                             linestyle='--',
                             label='Blue stars')
    if num == 1:
        fig.legend(handles=[s1, s2, s3, UAV_links, GN_links],
                   labels=['UAV', 'GN', 'Cov-GN', 'UAV-links', 'GN-links'],
                   loc='upper center')
    #fig.legend(handles=[s1, s2, s3, s4, s5, s6], ('UAV', 'GN','Cov-GN','UAV-links', 'GN-GN.links'), loc= 'upper right')
    fig.savefig("Positions.png")
コード例 #4
0
ファイル: main.py プロジェクト: omahaDonorLD/DeploNet
def global_plus_local(f):
    """ This function runs the whole approach global + local search """
    iterations_genetic = 1  # iterations genetic algorithm
    knowledge = 0.8  # level of knowledge
    list_best_individuals = list(
    )  # to store the best individual of each genetic algorithm run
    list_best_fitness = list(
    )  # to store the best fitness of the best individual of each run
    list_generations = list()  # to store the generations
    list_drones_climbing = list()
    list_evolution_max = list()
    type_global = "Genetic"
    type_local = "Hill Climbing"

    f.write(type_global)
    f.write("\n")
    scenarios.generate_victim_positions_traces()
    scenarios.partial_knowledge_generation(knowledge)

    for i in range(0, iterations_genetic):
        individual, fitness, generation, evol_max = genetic.genetic_algorithm(
            "global_plus_local", i, knowledge)
        list_best_individuals.append(individual)
        list_best_fitness.append(fitness)
        list_generations.append(generation)
        list_evolution_max.append(evol_max)

    length = len(list_best_fitness)
    mean = sum(list_best_fitness) / length
    sum2 = sum(x * x for x in list_best_fitness)
    std = abs(sum2 / length - mean**2)**0.5

    f.write("Results \n")
    f.write("Max, Min, Mean, Std \n")
    f.write(
        str(max(list_best_fitness)) + "," + str(min(list_best_fitness)) + "," +
        str(mean) + "," + str(std))
    f.write("\n")

    global_max = max(list_best_fitness)
    index = miscelleneous.find_max(list_best_fitness)

    plots.print_drones_data(list_best_individuals[index], f)

    # LOCAL
    f.write(type_local)
    f.write("\n")
    #list_dr = quality.init_modified(list_best_individuals[index], global_variables.num_drones) # To simulate different number of drones for the initial deployment and for the adaptation to the real conditions
    #list_drones_climbing, records = local.hill_climbing(list_dr, list_best_individuals[index].fitness.values)
    list_drones_climbing, records = local.hill_climbing(
        list_best_individuals[index],
        list_best_individuals[index].fitness.values)
    f.write("Results \n")
    f.write(str(quality.evaluate(list_drones_climbing)))
    plots.print_drones_data(list_drones_climbing, f)
    plots.positions(list_best_individuals[index], list_drones_climbing,
                    type_global, type_local)
    plots.evolution_local(records, type_local)
    plots.evolution_global(list_evolution_max[index], type_global)

    print("######### FIRST DEPLOYMENT STATISTICS ################")
    print("  Min %s" % min(list_best_fitness))
    print("  Max %s" % max(list_best_fitness))
    print("  Avg %s" % mean)
    print("  Std %s" % std)
コード例 #5
0
ファイル: main.py プロジェクト: omahaDonorLD/DeploNet
def only_global(f, type_algorithm, knowledge, fil, argument):
    #iterations_genetic = 120
    #iterations_genetic = 30 # how many times we run the algorithm
    iterations_genetic = 30
    iterations_pso = 1

    list_best_individuals = list()  # list of best individuals
    list_best_fitness = list()  # list of best fitnesses
    list_generations = list()  # list of generations
    list_evolution_max = list()
    list_covergence = list()

    list_best_individuals_f1 = list()  # list of best individuals
    list_best_fitness_f1 = list()  # list of best fitnesses
    list_generations_f1 = list()  # list of generations
    list_evolution_max_f1 = list()
    list_id_f1 = list()
    list_covergence_f1 = list()

    list_best_individuals_f2 = list()  # list of best individuals
    list_best_fitness_f2 = list()  # list of best fitnesses
    list_generations_f2 = list()  # list of generations
    list_evolution_max_f2 = list()
    list_id_f2 = list()
    list_covergence_f2 = list()

    list_best_individuals_f3 = list()  # list of best individuals
    list_best_fitness_f3 = list()  # list of best fitnesses
    list_generations_f3 = list()  # list of generations
    list_evolution_max_f3 = list()
    list_id_f3 = list()
    list_covergence_f3 = list()

    list_best_individuals_f4 = list()  # list of best individuals
    list_best_fitness_f4 = list()  # list of best fitnesses
    list_generations_f4 = list()  # list of generations
    list_evolution_max_f4 = list()
    list_id_f4 = list()
    list_covergence_f4 = list()

    results_f1 = list()
    results_f2 = list()
    results_f3 = list()
    results_f4 = list()
    res = list()

    # scenario generation
    ## basically, the victims are splitted into quadrants (4 :1.up-right,2.left-down,3.up-left,4.down-right)
    ## given the preferred number of ground nodes to display, the quadrants will appear
    scenarios.generate_victim_positions_traces()
    scenarios.partial_knowledge_generation(knowledge)

    if type_algorithm == "genetic":
        for i in range(0, iterations_genetic):
            #
            individual, fitness, generation, evol_max, convergence = genetic.genetic_algorithm(
                "genetic", i, knowledge)
            list_best_individuals.append(individual)
            list_best_fitness.append(fitness)
            list_generations.append(generation)
            list_evolution_max.append(evol_max)
            list_covergence.append(convergence)
            #print convergence

        print("list_covergence STEP ", list_covergence)
        stat = miscelleneous.statistics(list_best_fitness)
        stat_convergence = miscelleneous.statistics(list_covergence)
        data_results = pd.DataFrame(
            [stat], columns=["maximum", "minimum", "mean", "std", "index"])
        data_convergence = pd.DataFrame(
            [stat_convergence],
            columns=["maximum", "minimum", "mean", "std", "index"])
        data_results.to_csv(fil + "results.csv")
        data_convergence.to_csv(fil + "convergence.csv")
        f.write("The best solution of population 1\n")
        plots.print_drones_data(list_best_individuals[stat["index"]],
                                list_evolution_max[stat["index"]], f)

    if type_algorithm == "pso":
        for i in range(0, iterations_pso):
            individual, fitness, = pso.pso_algorithm()
            list_best_individuals.append(individual)
            list_best_fitness.append(fitness)

    if type_algorithm == "multi_population":

        for i in range(0, iterations_genetic):
            ## print the iterations
            print("Iteration genetic : ", i)
            if len(argument) > 1:  ## input : initial positions
                res = ga_multi_population.ga_multi_population(
                    argument, type_algorithm, i, knowledge)
            else:  ## classic search with no individuals to start with
                res = ga_multi_population.ga_multi_population(
                    None, type_algorithm, i, knowledge)
            ## 4 * iterations_genetic number of ga_multi_population : each node in the queue (ring schema)
            ## has THE SAME : iterations_genetic (30) results
            for i, r in enumerate(res):
                if i == 0:
                    results_f1.append(r)
                if i == 1:
                    results_f2.append(r)
                if i == 2:
                    results_f3.append(r)
                if i == 3:
                    results_f4.append(r)

    if type_algorithm == "multi_population":
        for r in results_f1:
            list_best_fitness_f1.append(r.best_fitness)
            list_best_individuals_f1.append(r.best)
            list_evolution_max_f1.append(r.best_evolution)
            list_id_f1.append(r.id)
            list_covergence_f1.append(r.convergence_generation)

        for r in results_f2:
            list_best_fitness_f2.append(r.best_fitness)
            list_best_individuals_f2.append(r.best)
            list_evolution_max_f2.append(r.best_evolution)
            list_id_f2.append(r.id)
            list_covergence_f2.append(r.convergence_generation)

        for r in results_f3:
            list_best_fitness_f3.append(r.best_fitness)
            list_best_individuals_f3.append(r.best)
            list_evolution_max_f3.append(r.best_evolution)
            list_id_f3.append(r.id)
            list_covergence_f3.append(r.convergence_generation)

        for r in results_f4:
            list_best_fitness_f4.append(r.best_fitness)
            list_best_individuals_f4.append(r.best)
            list_evolution_max_f4.append(r.best_evolution)
            list_id_f4.append(r.id)
            list_covergence_f4.append(r.convergence_generation)

        stat1 = miscelleneous.statistics(list_best_fitness_f1)
        stat2 = miscelleneous.statistics(list_best_fitness_f2)
        stat3 = miscelleneous.statistics(list_best_fitness_f3)
        stat4 = miscelleneous.statistics(list_best_fitness_f4)
        '''
		x=0
		for v in (list_covergence_f1,list_covergence_f2,list_covergence_f3,list_covergence_f4) :
			print(x," : ",v)
			x=x+1
		'''

        stat_convergence1 = miscelleneous.statistics(list_covergence_f1)
        stat_convergence2 = miscelleneous.statistics(list_covergence_f2)
        stat_convergence3 = miscelleneous.statistics(list_covergence_f3)
        stat_convergence4 = miscelleneous.statistics(list_covergence_f4)

        data_results = pd.DataFrame(
            [stat1, stat2, stat3, stat4],
            columns=["maximum", "minimum", "mean", "std", "index"])
        data_results.to_csv(fil + "results.csv")

        data_convergence = pd.DataFrame(
            [
                stat_convergence1, stat_convergence2, stat_convergence3,
                stat_convergence4
            ],
            columns=["maximum", "minimum", "mean", "std", "index"])
        data_convergence.to_csv(fil + "convergence.csv")

        f.write("The best solution of population 1\n")
        plots.print_drones_data(list_best_individuals_f1[stat1["index"]],
                                list_evolution_max_f1[stat1["index"]], f)
        f.write("The best solution of population 2\n")
        plots.print_drones_data(list_best_individuals_f2[stat2["index"]],
                                list_evolution_max_f2[stat2["index"]], f)
        f.write("The best solution of population 3\n")
        plots.print_drones_data(list_best_individuals_f3[stat3["index"]],
                                list_evolution_max_f3[stat3["index"]], f)
        f.write("The best solution of population 4\n")
        plots.print_drones_data(list_best_individuals_f4[stat4["index"]],
                                list_evolution_max_f4[stat4["index"]], f)

    if type_algorithm == "multi_objective":
        pareto_global = tools.ParetoFront()
        for i in range(0, iterations_genetic):
            pareto = ga_multi_objective.genetic_algorithm(
                "multi_objective", i, knowledge)
            pareto_global.update(pareto)
        plots.print_pareto(pareto_global, f)