def define_G(input_nc, output_nc, ngf, n_downsample_global=3, n_blocks_global=9, norm='instance'): norm_layer = get_norm_layer(norm_type=norm) netG = GlobalGenerator(input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer) #assert (torch.cuda.is_available()) netG.cuda() #cuda Azade netG.apply(weights_init) return netG
def define_D(input_nc, ndf, n_layers_D, norm='instance', use_sigmoid=False, num_D=1): norm_layer = get_norm_layer(norm_type=norm) netD = MultiscaleDiscriminator(input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D) # print(netD) assert (torch.cuda.is_available()) # #cuda Azade netD.cuda() #cuda Azade netD.apply(weights_init) return netD
def define_mask_D(input_nc, ndf, n_layers_D, norm='instance', use_sigmoid=False, num_D=1, num_objects=None): norm_layer = get_norm_layer(norm_type=norm) netD = MultiscaleDiscriminator_2(input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, num_objects) assert (torch.cuda.is_available()) netD.cuda() netD.apply(weights_init) return netD