def test_gen_sample_by_factors(): test_GUMP_SCENES_IDS = [26, 36, 25, 38] g1=gen_sample_by_factors(test_GUMP_SCENES_IDS, factor_grid, False) f3=list(g1[0].values())[0] r3=(np.array([128, 129, 130, 131, 132, 133, 134, 135, 136, 137]), np.array([138, 139, 140, 141, 142, 143, 144, 145, 146, 147])) f4=g1[1] r4=[25] assert_almost_equal(f3,r3) assert_almost_equal(f4,r4)
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 66, 66, 66, 66, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 66, 66, 66, 66, 66, 66, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 66, 66, 66]) assert_almost_equal(f2,r2) test_GUMP_SCENES_IDS = [26, 36, 25, 38] samp_gump, miss_gump = gen_sample_by_factors(test_GUMP_SCENES_IDS, factor_grid, False) def test_gen_sample_by_factors(): test_GUMP_SCENES_IDS = [26, 36, 25, 38] g1=gen_sample_by_factors(test_GUMP_SCENES_IDS, factor_grid, False) f3=list(g1[0].values())[0] r3=(np.array([128, 129, 130, 131, 132, 133, 134, 135, 136, 137]), np.array([138, 139, 140, 141, 142, 143, 144, 145, 146, 147])) f4=g1[1] r4=[25] assert_almost_equal(f3,r3) assert_almost_equal(f4,r4) def test_get_training_samples(): r5 = np.array([128, 129, 130, 131, 132, 133, 134, 135, 136, 137]) f5= list(get_training_samples(samp_gump).values())[0]