コード例 #1
0
def test_dict_hook():
    function_mock = Mock(return_value=None)
    hook = Hook("b", handler=function_mock)

    assert Schema({
        hook: str,
        Optional("b"): object
    }).validate({"b": "bye"}) == {
        "b": "bye"
    }
    function_mock.assert_called_once()

    assert Schema({
        hook: int,
        Optional("b"): object
    }).validate({"b": "bye"}) == {
        "b": "bye"
    }
    function_mock.assert_called_once()

    assert Schema({
        hook: str,
        "b": object
    }).validate({"b": "bye"}) == {
        "b": "bye"
    }
    assert function_mock.call_count == 2
コード例 #2
0
ファイル: test_schema.py プロジェクト: jsurloppe/schema
def test_dict_hook():
    function_mock = Mock(return_value=None)
    hook = Hook('b', handler=function_mock)

    assert Schema({
        hook: str,
        Optional('b'): object
    }).validate({'b': 'bye'}) == {
        'b': 'bye'
    }
    function_mock.assert_called_once()

    assert Schema({
        hook: int,
        Optional('b'): object
    }).validate({'b': 'bye'}) == {
        'b': 'bye'
    }
    function_mock.assert_called_once()

    assert Schema({
        hook: str,
        'b': object
    }).validate({'b': 'bye'}) == {
        'b': 'bye'
    }
    assert function_mock.call_count == 2
コード例 #3
0
ファイル: test_schema.py プロジェクト: dvershinin/pyNginx
# def haskey(key):
#     return lambda d: isinstance(d, dict) and key in d

def haskey(key):
    return Schema(lambda d: isinstance(d, dict) and key in d, name="has key {key}".format(key=key))


b = Schema(And(
    {
        "test": int, 
        Optional(1): int,
        Optional(2): int,
        Optional(3): int,
    },
    Or(
        haskey(1),
        And(
            haskey(2),
            haskey(3)
        )
    )
))
b.validate({"test": 54, 1: 4, 2: 5, 3: 6})

from schema import Hook
def _my_function(key, scope, error):
    print(key, scope, error)

Hook("key", handler=_my_function)
コード例 #4
0
    if isinstance(data, str) and re.match(r'-?\d+(\.\d+)?%', data):
        data = float(data.strip('%')) / 100
    else:
        assert isinstance(
            data, float), 'This field should be float or percent string'
    return data


policy_schema = Schema({
    Optional('weights', default=None):
    list,
    Optional('method', default=None):
    And(str, lambda s: s in ["per_channel", "per_tensor"]),
    Optional('init_sparsity', default=0):
    And(float, lambda s: s < 1.0 and s >= 0.0),
    Hook('target_sparsity', handler=_valid_prune_sparsity):
    object,
    Optional('target_sparsity', default=0.5):
    float,
    Optional("start_epoch", default=0):
    int,
    Hook('end_epoch', handler=_valid_prune_epoch):
    object,
    Optional('end_epoch', default=4):
    int
})

ops_schema = Schema({
    Optional('weight', default=None): {
        Optional('granularity', default=None):
        And(list,
コード例 #5
0
    Optional('model_conversion'): model_conversion_schema,

    Optional('tuning', default={
        'strategy': {'name': 'basic'},
        'accuracy_criterion': {'relative': 0.01, 'higher_is_better': True},
        'objective': 'performance',
        'exit_policy': {'timeout': 0, 'max_trials': 100, 'performance_only': False},
        'random_seed': 1978, 'tensorboard': False,
        'workspace': {'path': default_workspace}}): {
        Optional('strategy', default={'name': 'basic'}): {
            'name': And(str, lambda s: s in STRATEGIES),
            Optional('accuracy_weight', default=1.0): float,
            Optional('latency_weight', default=1.0): float
        } ,
        Hook('accuracy_criterion', handler=_valid_accuracy_field): object,
        Optional('accuracy_criterion', default={'relative': 0.01}): {
            Optional('relative'): And(Or(str, float), Use(percent_to_float)),
            Optional('absolute'): And(Or(str, int, float), Use(percent_to_float)),
            Optional('higher_is_better', default=True): bool,
        },
        Optional('objective', default='performance'): And(str, lambda s: s in OBJECTIVES),
        Optional('exit_policy', default={'timeout': 0,
                                         'max_trials': 100,
                                         'performance_only': False}): {
            Optional('timeout', default=0): int,
            Optional('max_trials', default=100): int,
            Optional('performance_only', default=False): bool,
        },
        Optional('random_seed', default=1978): int,
        Optional('tensorboard', default=False): And(bool, lambda s: s in [True, False]),
コード例 #6
0
ファイル: config.py プロジェクト: swarnend/lp-opt-tool
    Optional('Resize'): {
        'size': And(int, lambda s: s > 0)
    },
    Optional('CenterCrop'): {
        'size': And(int, lambda s: s > 0)
    },
    Optional('Reshape'): {
        'shape': And(list, lambda s: all(isinstance(i, int) for i in s)),
    }
})

dataloader_schema = Schema({
    Optional('batch_size', default=1):
    And(int, lambda s: s > 0),
    Optional('dataset', default=None): {
        Hook('type', handler=_valid_type_field): object,
        Optional('type'): str,
        Optional('root'): str,
        Optional('content_folder'): str,
        Optional('style_folder'): str,
    },
    Optional('transform', default=None):
    transform_schema
})

schema = Schema({
    'framework': {
        Hook('name', handler=_valid_framework_field): object,
        'name': And(str, lambda s: s in FRAMEWORKS),
        Optional('inputs', default=None): And(Or(str, list),
                                              Use(input_to_list)),
コード例 #7
0
ファイル: upload.py プロジェクト: aaronrancsik/prismedia
def main():
    options = docopt(__doc__, version=VERSION)

    earlyoptionSchema = Schema({
        Optional('--log'): Or(None, And(
                                str,
                                Use(str.upper),
                                validateLogLevel,
                                error="Log level not recognized")
                              ),
        Optional('--quiet', default=False): bool,
        Optional('--debug'): bool,
        Optional('--url-only', default=False): bool,
        Optional('--batch', default=False): bool,
        Optional('--withNFO', default=False): bool,
        Optional('--withThumbnail', default=False): bool,
        Optional('--withName', default=False): bool,
        Optional('--withDescription', default=False): bool,
        Optional('--withTags', default=False): bool,
        Optional('--withPlaylist', default=False): bool,
        Optional('--withPublishAt', default=False): bool,
        Optional('--withPlatform', default=False): bool,
        Optional('--withCategory', default=False): bool,
        Optional('--withLanguage', default=False): bool,
        Optional('--withChannel', default=False): bool,
        # This allow to return all other options for further use: https://github.com/keleshev/schema#extra-keys
        object: object
    })

    schema = Schema({
        '--file': And(str, os.path.exists, validateVideo, error='file is not supported, please use mp4'),
        # Strict option checks - at the moment Schema needs to check Hook and Optional separately #
        Hook('--name', handler=_optionnalOrStrict): object,
        Hook('--description', handler=_optionnalOrStrict): object,
        Hook('--tags', handler=_optionnalOrStrict): object,
        Hook('--category', handler=_optionnalOrStrict): object,
        Hook('--language', handler=_optionnalOrStrict): object,
        Hook('--platform', handler=_optionnalOrStrict): object,
        Hook('--publishAt', handler=_optionnalOrStrict): object,
        Hook('--thumbnail', handler=_optionnalOrStrict): object,
        Hook('--channel', handler=_optionnalOrStrict): object,
        Hook('--playlist', handler=_optionnalOrStrict): object,
        # Validate checks #
        Optional('--name'): Or(None, And(
                                str,
                                lambda x: not x.isdigit(),
                                error="The video name should be a string")
                               ),
        Optional('--description'): Or(None, And(
                                        str,
                                        lambda x: not x.isdigit(),
                                        error="The video description should be a string")
                                      ),
        Optional('--tags'): Or(None, And(
                                    str,
                                    lambda x: not x.isdigit(),
                                    error="Tags should be a string")
                               ),
        Optional('--category'): Or(None, And(
                                    str,
                                    validateCategory,
                                    error="Category not recognized, please see --help")
                                   ),
        Optional('--language'): Or(None, And(
                                    str,
                                    validateLanguage,
                                    error="Language not recognized, please see --help")
                                   ),
        Optional('--privacy'): Or(None, And(
                                    str,
                                    validatePrivacy,
                                    error="Please use recognized privacy between public, unlisted or private")
                                  ),
        Optional('--nfo'): Or(None, str),
        Optional('--platform'): Or(None, And(str, validatePlatform, error="Sorry, upload platform not supported")),
        Optional('--publishAt'): Or(None, And(
                                    str,
                                    validatePublish,
                                    error="DATE should be the form YYYY-MM-DDThh:mm:ss and has to be in the future")
                                    ),
        Optional('--peertubeAt'): Or(None, And(
                                    str,
                                    validatePublish,
                                    error="DATE should be the form YYYY-MM-DDThh:mm:ss and has to be in the future")
                                    ),
        Optional('--youtubeAt'): Or(None, And(
                                    str,
                                    validatePublish,
                                    error="DATE should be the form YYYY-MM-DDThh:mm:ss and has to be in the future")
                                    ),
        Optional('--cca'): bool,
        Optional('--disable-comments'): bool,
        Optional('--nsfw'): bool,
        Optional('--thumbnail'): Or(None, And(
                                    str, validateThumbnail, error='thumbnail is not supported, please use jpg/jpeg'),
                                    ),
        Optional('--channel'): Or(None, str),
        Optional('--channelCreate'): bool,
        Optional('--playlist'): Or(None, str),
        Optional('--playlistCreate'): bool,
        '--help': bool,
        '--version': bool,
        # This allow to return all other options for further use: https://github.com/keleshev/schema#extra-keys
        object: object
    })
    # We need to validate early options first as withNFO and logs options should be prioritized
    try:
        options = earlyoptionSchema.validate(options)
        configureLogs(options)
    except SchemaError as e:
        logger.critical(e)
        exit(1)

    if options.get('--url-only') or options.get('--batch'):
        configureStdoutLogs()

    options = utils.parseNFO(options)

    # Once NFO are loaded, we need to revalidate strict options in case some were in NFO
    try:
        options = earlyoptionSchema.validate(options)
    except SchemaError as e:
        logger.critical(e)
        exit(1)

    if not options.get('--thumbnail'):
        options = utils.searchThumbnail(options)

    try:
        options = schema.validate(options)
    except SchemaError as e:
        logger.critical(e)
        exit(1)

    logger.debug("Python " + sys.version)
    logger.debug(options)

    if options.get('--platform') is None or "peertube" in options.get('--platform'):
        pt_upload.run(options)
    if options.get('--platform') is None or "youtube" in options.get('--platform'):
        yt_upload.run(options)