コード例 #1
0
    def test_get_suggestions_calls_to_numpy(self):
        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'grid_search': {'n_experiments': 10},
            'matrix': {'feature': {'values': [1, 2, 3]}}
        })
        manager = GridSearchManager(hptuning_config=hptuning_config)
        with patch.object(MatrixConfig, 'to_numpy') as to_numpy_mock:
            manager.get_suggestions()

        assert to_numpy_mock.call_count == 1

        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'grid_search': {'n_experiments': 10},
            'matrix': {
                'feature1': {'values': [1, 2, 3]},
                'feature2': {'logspace': '0.01:0.1:5'}
            }
        })
        manager = GridSearchManager(hptuning_config=hptuning_config)
        with patch.object(MatrixConfig, 'to_numpy') as to_numpy_mock:
            manager.get_suggestions()

        assert to_numpy_mock.call_count == 2
コード例 #2
0
    def test_get_suggestions_calls_sample(self):
        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'random_search': {'n_experiments': 1},
            'matrix': {
                'feature1': {'values': [1, 2, 3]},
                'feature2': {'linspace': [1, 2, 5]},
                'feature3': {'range': [1, 5, 1]}
            }
        })
        manager = RandomSearchManager(hptuning_config=hptuning_config)
        with patch.object(MatrixConfig, 'sample') as sample_mock:
            manager.get_suggestions()

        assert sample_mock.call_count == 3

        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'random_search': {'n_experiments': 1},
            'matrix': {
                'feature1': {'pvalues': [(1, 0.3), (2, 0.3), (3, 0.3)]},
                'feature2': {'uniform': [0, 1]},
                'feature3': {'qlognormal': [0, 0.5, 0.51]},
                'feature4': {'range': [1, 5, 1]}
            }
        })
        manager = RandomSearchManager(hptuning_config=hptuning_config)
        with patch.object(MatrixConfig, 'sample') as sample_mock:
            manager.get_suggestions()

        assert sample_mock.call_count == 4
コード例 #3
0
    def test_get_suggestions(self):
        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'grid_search': {
                'n_experiments': 10
            },
            'matrix': {
                'feature': {
                    'values': [1, 2, 3]
                }
            }
        })
        manager = GridSearchManager(hptuning_config=hptuning_config)
        assert len(manager.get_suggestions()) == 3

        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'grid_search': {
                'n_experiments': 10
            },
            'matrix': {
                'feature1': {
                    'values': [1, 2, 3]
                },
                'feature2': {
                    'linspace': [1, 2, 5]
                },
                'feature3': {
                    'range': [1, 5, 1]
                }
            }
        })
        manager = GridSearchManager(hptuning_config=hptuning_config)
        assert len(manager.get_suggestions()) == 10
コード例 #4
0
    def setUp(self):
        super().setUp()
        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'bo': {
                'n_iterations': 5,
                'n_initial_trials': 5,
                'metric': {
                    'name': 'loss',
                    'optimization': 'minimize'
                },
                'utility_function': {
                    'acquisition_function': 'ucb',
                    'kappa': 1.2,
                    'gaussian_process': {
                        'kernel': 'matern',
                        'length_scale': 1.0,
                        'nu': 1.9,
                        'n_restarts_optimizer': 0
                    }
                }
            },
            'matrix': {
                'feature1': {'values': [1, 2, 3]},
                'feature2': {'linspace': [1, 2, 5]},
                'feature3': {'range': [1, 5, 1]}
            }
        })
        self.manager1 = BOSearchManager(hptuning_config=hptuning_config)

        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'bo': {
                'n_iterations': 4,
                'n_initial_trials': 4,
                'metric': {
                    'name': 'accuracy',
                    'optimization': 'maximize'
                },
                'utility_function': {
                    'acquisition_function': 'ei',
                    'eps': 1.2,
                    'gaussian_process': {
                        'kernel': 'matern',
                        'length_scale': 1.0,
                        'nu': 1.9,
                        'n_restarts_optimizer': 0
                    }
                }
            },
            'matrix': {
                'feature1': {'values': [1, 2, 3, 4, 5]},
                'feature2': {'linspace': [1, 5, 5]},
                'feature3': {'range': [1, 6, 1]},
                'feature4': {'uniform': [1, 5]},
                'feature5': {'values': ['a', 'b', 'c']},
            }
        })
        self.manager2 = BOSearchManager(hptuning_config=hptuning_config)
コード例 #5
0
def validate_group_hptuning_config(config, raise_for_rest: bool = False):
    try:
        HPTuningConfig.from_dict(config)
    except MarshmallowValidationError as e:
        if raise_for_rest:
            raise ValidationError(e)
        else:
            raise DjangoValidationError(e)
コード例 #6
0
    def test_get_suggestions(self):
        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'random_search': {
                'n_experiments': 10
            },
            'matrix': {
                'feature1': {
                    'values': [1, 2]
                },
                'feature3': {
                    'range': [1, 3, 1]
                }
            }
        })
        manager = RandomSearchManager(hptuning_config=hptuning_config)
        assert len(manager.get_suggestions()) == 4

        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'random_search': {
                'n_experiments': 10
            },
            'matrix': {
                'feature1': {
                    'values': [1, 2, 3]
                },
                'feature2': {
                    'linspace': [1, 2, 5]
                },
                'feature3': {
                    'range': [1, 5, 1]
                }
            }
        })
        manager = RandomSearchManager(hptuning_config=hptuning_config)
        assert len(manager.get_suggestions()) == 10

        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'random_search': {
                'n_experiments': 10
            },
            'matrix': {
                'feature1': {
                    'pvalues': [(1, 0.3), (2, 0.3), (3, 0.3)]
                },
                'feature2': {
                    'uniform': [0, 1]
                },
                'feature3': {
                    'qlognormal': [0, 0.5, 0.51]
                }
            }
        })
        manager = RandomSearchManager(hptuning_config=hptuning_config)
        assert len(manager.get_suggestions()) == 10
コード例 #7
0
    def setUp(self):
        super().setUp()
        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'hyperband': {
                'max_iter': 10,
                'eta': 3,
                'resource': {'name': 'steps', 'type': 'float'},
                'resume': False,
                'metric': {'name': 'loss', 'optimization': 'minimize'}
            },
            'matrix': {
                'feature1': {'values': [1, 2, 3]},
                'feature2': {'linspace': [1, 2, 5]},
                'feature3': {'range': [1, 5, 1]}
            }
        })
        self.manager1 = HyperbandSearchManager(hptuning_config=hptuning_config)

        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'hyperband': {
                'max_iter': 81,
                'eta': 3,
                'resource': {'name': 'size', 'type': 'int'},
                'resume': False,
                'metric': {'name': 'loss', 'optimization': 'minimize'}
            },
            'matrix': {
                'feature1': {'values': [1, 2, 3]},
                'feature2': {'linspace': [1, 2, 5]},
                'feature3': {'range': [1, 5, 1]},
                'feature4': {'range': [1, 5, 1]}
            }
        })
        self.manager2 = HyperbandSearchManager(hptuning_config=hptuning_config)
コード例 #8
0
 def hptuning_config(self) -> Optional['HPTuningConfig']:
     return HPTuningConfig.from_dict(
         self.hptuning) if self.hptuning else None
コード例 #9
0
    def test_concrete_example(self):
        hptuning_config = HPTuningConfig.from_dict({
            'concurrency': 2,
            'bo': {
                'n_iterations': 5,
                'n_initial_trials': 10,
                'metric': {
                    'name': 'loss',
                    'optimization': 'minimize'
                },
                'utility_function': {
                    'acquisition_function': 'ucb',
                    'kappa': 2.576,
                    'gaussian_process': {
                        'kernel': 'matern',
                        'length_scale': 1.0,
                        'nu': 1.9,
                        'n_restarts_optimizer': 0
                    },
                    'n_warmup': 1,
                    'n_iter': 1
                }
            },
            'matrix': {
                'learning_rate': {'uniform': [0.001, 0.01]},
                'dropout': {'values': [0.25, 0.3]},
                'activation': {'values': ['relu', 'sigmoid']}
            }
        })
        optimizer = BOOptimizer(hptuning_config=hptuning_config)

        configs = [
            {
                "num_epochs": 1,
                "num_steps": 300,
                "batch_size": 128,
                "learning_rate": 0.004544653508229265,
                "activation": "sigmoid",
                "dropout": 0.3
            },
            {
                "num_epochs": 1,
                "num_steps": 300,
                "batch_size": 128,
                "learning_rate": 0.005615296199690899,
                "activation": "sigmoid",
                "dropout": 0.3
            },
            {
                "num_epochs": 1,
                "num_steps": 300,
                "batch_size": 128,
                "learning_rate": 0.008784330869587902,
                "activation": "sigmoid",
                "dropout": 0.25
            },
            {
                "num_epochs": 1,
                "num_steps": 300,
                "batch_size": 128,
                "learning_rate": 0.0058591075447430065,
                "activation": "sigmoid",
                "dropout": 0.3
            },
            {
                "num_epochs": 1,
                "num_steps": 300,
                "batch_size": 128,
                "learning_rate": 0.007464080062927171,
                "activation": "sigmoid",
                "dropout": 0.25
            },
            {
                "num_epochs": 1,
                "num_steps": 300,
                "batch_size": 128,
                "learning_rate": 0.0024763129571936738,
                "activation": "relu",
                "dropout": 0.3
            },
            {
                "num_epochs": 1,
                "num_steps": 300,
                "batch_size": 128,
                "learning_rate": 0.0074881581817925705,
                "activation": "sigmoid",
                "dropout": 0.3
            },
            {
                "num_epochs": 1,
                "num_steps": 300,
                "batch_size": 128,
                "learning_rate": 0.003360405779075163,
                "activation": "relu",
                "dropout": 0.3
            },
            {
                "num_epochs": 1,
                "num_steps": 300,
                "batch_size": 128,
                "learning_rate": 0.009916904455792564,
                "activation": "sigmoid",
                "dropout": 0.25
            },
            {
                "num_epochs": 1,
                "num_steps": 300,
                "batch_size": 128,
                "learning_rate": 0.000881723263162717,
                "activation": "sigmoid",
                "dropout": 0.3
            }
        ]
        metrics = [
            2.3018131256103516,
            2.302884340286255,
            2.3071441650390625,
            2.3034636974334717,
            2.301487922668457,
            0.05087224021553993,
            2.3032383918762207,
            0.06383182853460312,
            2.3120572566986084,
            0.7617478370666504
        ]

        optimizer.add_observations(configs=configs, metrics=metrics)
        suggestion = optimizer.get_suggestion()

        assert 0.001 <= suggestion['learning_rate'] <= 0.01
        assert suggestion['dropout'] in [0.25, 0.3]
        assert suggestion['activation'] in ['relu', 'sigmoid']
コード例 #10
0
 def hptuning_config(self):
     return HPTuningConfig.from_dict(
         self.hptuning) if self.hptuning else None