コード例 #1
0
def dark_current(n, T, tag='', amb_temp=''):
    int_times = np.round(np.linspace(5, 500, n), 0)

    cam.printProgressBar(0, sum(int_times))
    y = 0

    for j in int_times:
        cam.set_int_time(j)
        cam.set_frame_time(j + 20)

        cap, _ = cam.img_cap(routine, img_dir, 'f')
        hdu_img = fits.open(unsorted_img)
        data = hdu_img[0].data

        dark_header = fits.getheader(unsorted_img)
        dark_header.append(('FPATEMP', T, 'Temperature of detector'))
        dark_header.append(('TEMPAMB', amb_temp, 'Ambient Temperature'))
        hdu_img.close()

        os.remove(unsorted_img)  #Delete image after data retrieval
        fits.writeto(unsorted_img, data, dark_header)
        cam.file_sorting(img_dir, j, j + 20, tag=tag)

        y += j
        cam.printProgressBar(y, sum(int_times))
    print('PROGRAM HAS COMPLETED')
コード例 #2
0
def full_well(n, int_t, tag=''):
    dit = cam.set_int_time(int_t)
    cam.set_frame_time(int_t + 20)
    cam.printProgressBar(0, n)

    for j in range(n):
        cap, _ = cam.img_cap(routine, img_dir, 'f')
        cam.file_sorting(img_dir, dit, dit + 20, tag=tag)
        cam.printProgressBar(j, n)
コード例 #3
0
def read_ramp(n):
    int_times = np.round(np.linspace(0.033, 0.5, n), 3)
    RNs = []
    bias_level = []
    cam.printProgressBar(0, n)
    y = 0
    for j in int_times:
        int_t = cam.set_int_time(j)
        if int_t < (j + 1):
            cam.set_frame_time(20.33)

            bias_1, _ = cam.simple_cap()
            bias_2, _ = cam.simple_cap()

            bias_1 = np.asarray(bias_1, dtype=np.int32)
            bias_2 = np.asarray(bias_2, dtype=np.int32)
            bias_dif = bias_2 - bias_1

            dif_clipped = bias_dif.flatten()
            RNs.append(np.std(dif_clipped) / np.sqrt(2))

            bias_level.append(np.median(bias_1))
        else:
            RNs.append(RNs[-1])
            bias_level.append(bias_level[-1])

        y += 1
        cam.printProgressBar(y, n)
    RNs = 3.22 * np.array(RNs)
    bias_level = 3.22 * np.array(bias_level)

    int_times *= 1E3

    fig, ax1 = plt.subplots()

    color = 'tab:red'
    ax1.set_xlabel('Integration Time ($\mu$s)')
    ax1.set_ylabel('Median $e^-$/pixel', color=color)
    ax1.scatter(int_times, bias_level, color=color)
    ax1.tick_params(axis='y', labelcolor=color)

    ax2 = ax1.twinx()  # instantiate a second axes that shares the same x-axis

    color = 'tab:blue'
    ax2.set_ylabel('$\sigma$',
                   color=color)  # we already handled the x-label with ax1
    ax2.scatter(int_times, RNs, color=color)
    ax2.tick_params(axis='y', labelcolor=color)

    fig.tight_layout()  # otherwise the right y-label is slightly clipped
    plt.grid(True)
    plt.title('Read-noise/Bias as function of Integration Time')
    plt.show()
コード例 #4
0
def master_bias(n, tag, T):
    '''
    Enter docstring here
    '''
    cam.set_int_time(0.033)
    cam.set_frame_time(100.033)
    cam.printProgressBar(0,
                         n,
                         prefix='Progress:',
                         suffix='Complete',
                         length=50)

    stack = np.zeros((naxis1, naxis2), dtype=np.uint16)
    for j in range(n):
        cap, _ = cam.img_cap(routine, img_dir, 'f')
        hdu_img = fits.open(unsorted_img)
        fits_img = hdu_img[0]
        data = fits_img.data
        hdu_img.close()  #Close image so it can be sorted

        stack = np.dstack((stack, data))

        cam.printProgressBar(j,n, prefix = 'Progress:', \
            suffix = 'Complete', length = 50)

        if j == n - 1:  #On final frame grab header
            bias_header = fits.getheader(unsorted_img)

        os.remove(unsorted_img)  #Delete image after data retrieval

    bias_header.append(('NDIT', n, 'Number of integrations'))
    bias_header.append(('TYPE', 'MASTER_BIAS', '0s exposure frame'))
    bias_header.append(('FPATEMP', T, 'Temperature of detector'))

    #Median Stack
    stack = stack[:, :, 1:]  #Slice off base layer
    master_bias = np.median(stack, axis=2)
    master_bias = master_bias.astype(np.uint16)
    #Write master frame to fits
    master_path = read_path + 'master_bias_' \
                + tag + '.fits'
    fits.writeto(master_path, master_bias, bias_header)
    print('PROGRAM HAS COMPLETED')
コード例 #5
0
def read_noise_estimate(n):
    '''
    Capture n pairs of bias frames (520REFCLKS)
    Produce difference image from each pair and store
    read noise estimate from sigma/sqrt(2) of difference
    Output histogram of final pair with RN estimate as average
    of all pairs
    '''
    cam.set_int_time(0.033)
    cam.set_frame_time(100)
    cam.printProgressBar(0,
                         2 * n,
                         prefix='Progress:',
                         suffix='Complete',
                         length=50)
    y = 0
    RNs = []

    for j in range(n):
        bias_1, _ = cam.simple_cap()
        y += 1
        cam.printProgressBar(y, 2 * n)
        bias_2, _ = cam.simple_cap()
        y += 1
        cam.printProgressBar(y, 2 * n)

        bias_1 = np.asarray(bias_1, dtype=np.int32)
        bias_2 = np.asarray(bias_2, dtype=np.int32)
        #save max mean dif, max absolute dif
        bias_dif = bias_2 - bias_1

        dif_clipped = bias_dif.flatten()
        RNs.append(np.std(dif_clipped) / np.sqrt(2))
    dev = np.std(dif_clipped)
    RNs = np.array(RNs)
    RN = round(np.median(RNs), 3)
    uncert = round(3 * np.std(RNs), 2)
    sample_hist, _, _ = stats.sigmaclip(dif_clipped, 5, 5)
    N, bins, _ = plt.hist(sample_hist,bins = 265,facecolor='blue', alpha=0.75,\
                label = 'Bias Difference Image')

    def fit_function(x, B, sigma):
        return (B * np.exp(-1.0 * (x**2) / (2 * sigma**2)))
    popt, _ = optimize.curve_fit(fit_function, xdata=bins[0:-1]+0.5, \
                ydata=N, p0=[0, dev])
    xspace = np.linspace(bins[0], bins[-1], 100000)
    fit_dev = round(popt[1], 3)
    delta_sig = round(abs(fit_dev - dev), 2)
    plt.plot(xspace+0.5, fit_function(xspace, *popt), color='darkorange', \
        linewidth=2.5, label='Gaussian fit, $\Delta\sigma$:{}'.format(delta_sig))

    plt.ylabel('No. of Pixels')
    plt.xlabel('ADUs')
    plt.title(
        'Read Noise Estimate:${}\pm{}$ ADUs ($n={}$, FPA:$-40^\circ$C)'.format(
            RN, uncert, n))
    plt.legend(loc='best')
    plt.show()
    print('PROGRAM HAS COMPLETED')
コード例 #6
0
def master_dark(i, n, T, tag=''):
    '''
    DIT and NDIT are inputs
    Function can also take tag for sorting individual frames onto local drive
    T is the FPA temperature used to record temperature of FPA for this dark
    which is written to file name and FITS header
    Program also outputs a .npy binary file containing 3D datacube of central (100,100)
    window for studying temporal variance over stack
    '''
    cam.set_int_time(i)
    cam.set_frame_time(i + 20)
    bias = cam.get_master_bias(T)

    cam.printProgressBar(0,
                         n,
                         prefix='Progress:',
                         suffix='Complete',
                         length=50)

    stack = np.zeros((naxis1, naxis2), dtype=np.uint16)
    window = np.zeros((100, 100), dtype=np.uint16)
    for j in range(n):
        _, _ = cam.img_cap(routine, img_dir, 'f')
        hdu_img = fits.open(unsorted_img)
        data = hdu_img[0].data
        hdu_img.close()  #Close image so it can be sorted

        data = data - bias
        stack = np.dstack((stack, data))

        data_window = cam.window(data, 100)
        window = np.dstack((window, data_window))

        cam.printProgressBar(j,n, prefix = 'Progress:', \
            suffix = 'Complete', length = 50)

        if j == n - 1:  #On final frame grab header
            dark_header = fits.getheader(unsorted_img)

        #Save single frame to local drive
        cam.file_sorting(local_img_dir, i, i + 20, tag=tag)

    #Median stack
    stack = stack[:, :, 1:]  #Slice off base layer
    master_dark = np.median(stack, axis=2)

    #Prepare window for temporal analysis
    window = window[:, :, 1:]  #Slice off base layer
    temp_var = np.median(np.var(stack, axis=2))
    temp_path = master_darks + 'dark_cube' \
                + str(i/1000) + '_' +str(T) +'C.npy'
    np.save(temp_path, window)

    dark_header.append(('NDIT', n, 'Number of integrations'))
    dark_header.append(('TYPE', 'MASTER_DARK', 'Median stack of dark frames'))
    dark_header.append(('FPATEMP', T, 'Temperature of detector'))
    dark_header.append(
        ('TEMPVAR', temp_var,
         'Median temporal variance of central (100,100) window'))

    #Output master frame to fits
    master_path = master_darks + 'master_dark_' \
                + str(i/1000) + '_' +str(T) +'C.fits'
    fits.writeto(master_path, master_dark, dark_header)
    print('PROGRAM HAS COMPLETED')