def test_should_return_ratio_and_count_of_tagged_tokens(self): tagged_tokens = [ SimpleToken('this'), SimpleToken('is'), SimpleToken('tagged') ] not_tagged_tokens = [ SimpleToken('this'), SimpleToken('isn\'t') ] doc = SimpleStructuredDocument(lines=[SimpleLine( tagged_tokens + not_tagged_tokens )]) for token in tagged_tokens: doc.set_tag(token, TAG1) num_total = len(tagged_tokens) + len(not_tagged_tokens) results = evaluate_document_by_page(doc) assert results == [{ 'count': { TAG1: len(tagged_tokens), None: len(not_tagged_tokens) }, 'percentage': { TAG1: len(tagged_tokens) / num_total, None: len(not_tagged_tokens) / num_total } }]
def test_should_strip_prefix(self): tagged_tokens = [ SimpleToken('this', tag=TAG1, tag_prefix=B_TAG_PREFIX), SimpleToken('is', tag=TAG1, tag_prefix=I_TAG_PREFIX), SimpleToken('tagged', tag=TAG1, tag_prefix=I_TAG_PREFIX) ] doc = SimpleStructuredDocument(lines=[SimpleLine(tagged_tokens)]) results = evaluate_document_by_page(doc) assert set(results[0]['count'].keys()) == {TAG1}
def convert(args): logger = get_logger() svg_filename_pattern = args.svg_path if not svg_filename_pattern: svg_filename_pattern = svg_pattern_for_lxml_path(args.lxml_path) logger.debug('svg_filename_pattern: %s', svg_filename_pattern) lxml_root = etree.parse(args.lxml_path).getroot() match_detail_reporter = None if args.annotate: annotators = DEFAULT_ANNOTATORS if args.debug_match: match_detail_reporter = CsvMatchDetailReporter( open_csv_output(args.debug_match), args.debug_match) if args.xml_path: xml_mapping = parse_xml_mapping(args.xml_mapping_path) target_annotations = xml_root_to_target_annotations( etree.parse(args.xml_path).getroot(), xml_mapping) annotators = annotators + [ MatchingAnnotator(target_annotations, match_detail_reporter=match_detail_reporter, use_tag_begin_prefix=True) ] annotator = Annotator(annotators) else: annotator = None if annotator: svg_roots = list(iter_svg_pages_for_lxml(lxml_root)) annotator.annotate(SvgStructuredDocument(svg_roots)) else: svg_roots = iter_svg_pages_for_lxml(lxml_root) for page_index, svg_root in enumerate(svg_roots): if annotator: svg_root = visualize_svg_annotations(svg_root) svg_filename = svg_filename_pattern.format(1 + page_index) logger.info('writing to: %s', svg_filename) with open(svg_filename, 'wb') as f: etree.ElementTree(svg_root).write(f, pretty_print=True) if annotator: tagging_evaluation_results = evaluate_document_by_page( SvgStructuredDocument(svg_roots)) logger.info( 'tagging evaluation:\n%s', '\n'.join([ 'page{}: {}'.format(1 + i, r) for i, r in enumerate(tagging_evaluation_results) ])) if args.annotation_evaluation_csv: write_dict_csv( args.annotation_evaluation_csv, DEFAULT_EVALUATION_COLUMNS, to_annotation_evaluation_csv_dict_rows( tagging_evaluation_results, document=os.path.basename(args.lxml_path))) if match_detail_reporter: match_detail_reporter.close()
def configure_pipeline(p, opt): image_size = ((opt.image_width, opt.image_height) if opt.image_width and opt.image_height else None) page_range = opt.pages first_page = page_range[0] if page_range else 1 xml_mapping = parse_xml_mapping(opt.xml_mapping_path) if opt.lxml_path: lxml_xml_file_pairs = ( p | beam.Create( [[ join_if_relative_path(opt.base_data_path, s) for s in [opt.lxml_path, opt.xml_path] ]]) | "FindFilePairs" >> TransformAndLog( beam.FlatMap(lambda patterns: islice( find_file_pairs_grouped_by_parent_directory_or_name( patterns), opt.limit)), log_prefix='file pairs: ', log_level='debug') | PreventFusion() | "ReadFileContent" >> beam.Map( lambda filenames: { 'source_filename': filenames[0], 'xml_filename': filenames[1], 'lxml_content': read_all_from_path(filenames[0]), 'xml_content': read_all_from_path(filenames[1]) })) elif opt.pdf_path or opt.pdf_xml_file_list: if opt.pdf_xml_file_list: pdf_xml_url_pairs = ( p | "ReadFilePairUrls" >> ReadDictCsv(opt.pdf_xml_file_list, limit=opt.limit) | "TranslateFilePairUrls" >> beam.Map(lambda row: (row['source_url'], row['xml_url']))) else: pdf_xml_url_pairs = (p | beam.Create([[ join_if_relative_path(opt.base_data_path, s) for s in [opt.pdf_path, opt.xml_path] ]]) | "FindFilePairs" >> TransformAndLog( beam.FlatMap(lambda patterns: islice( find_file_pairs_grouped_by_parent_directory_or_name( patterns), opt.limit)), log_prefix='file pairs: ', log_level='debug')) pdf_xml_file_pairs = ( pdf_xml_url_pairs | PreventFusion() | "ReadFileContent" >> TransformAndCount( beam.Map( lambda filenames: { 'source_filename': filenames[0], 'xml_filename': filenames[1], 'pdf_content': read_all_from_path(filenames[0]), 'xml_content': read_all_from_path(filenames[1]) }), MetricCounters.FILE_PAIR)) lxml_xml_file_pairs = ( pdf_xml_file_pairs | "ConvertPdfToLxml" >> MapOrLog( lambda v: remove_keys_from_dict( extend_dict( v, { 'lxml_content': convert_pdf_bytes_to_lxml(v['pdf_content'], path=v['source_filename' ], page_range=page_range) }), # we don't need the pdf_content unless we are writing tf_records None if opt.save_tfrecords else {'pdf_content'}), log_fn=lambda e, v: (get_logger().warning( 'caught exception (ignoring item): %s, pdf: %s, xml: %s', e, v['source_filename'], v['xml_filename'], exc_info=e)), error_count=MetricCounters.CONVERT_PDF_TO_LXML_ERROR)) else: raise RuntimeError('either lxml-path or pdf-path required') if opt.save_png or opt.save_tfrecords: with_pdf_png_pages = ( (lxml_xml_file_pairs if opt.save_tfrecords else pdf_xml_file_pairs) | "ConvertPdfToPng" >> MapOrLog( lambda v: remove_keys_from_dict( extend_dict( v, { 'pdf_png_pages': list( pdf_bytes_to_png_pages(v['pdf_content'], dpi=opt.png_dpi, image_size=image_size, page_range=page_range)) }), {'pdf_content'} # we no longer need the pdf_content ), error_count=MetricCounters.CONVERT_PDF_TO_PNG_ERROR)) if opt.save_png: _ = (with_pdf_png_pages | "SavePdfToPng" >> TransformAndLog( beam.Map(lambda v: save_pages( FileSystems.join( opt.output_path, change_ext( relative_path(opt.base_data_path, v[ 'source_filename']), None, '.png.zip')), '.png', v['pdf_png_pages'])), log_fn=lambda x: get_logger().info('saved result: %s', x))) if opt.save_lxml: _ = (lxml_xml_file_pairs | "SaveLxml" >> TransformAndLog( beam.Map(lambda v: save_file_content( FileSystems.join( opt.output_path, change_ext( relative_path(opt.base_data_path, v[ 'source_filename']), None, '.lxml.gz')), v[ 'lxml_content'])), log_fn=lambda x: get_logger().info('saved lxml: %s', x))) annotation_results = (( with_pdf_png_pages if opt.save_tfrecords else lxml_xml_file_pairs ) | "ConvertLxmlToSvgAndAnnotate" >> TransformAndCount( MapOrLog( lambda v: remove_keys_from_dict( extend_dict( v, { 'svg_pages': list( convert_and_annotate_lxml_content( v['lxml_content'], v['xml_content'], xml_mapping, name=v['source_filename'])) }), # Won't need the XML anymore {'lxml_content', 'xml_content'}), log_fn=lambda e, v: (get_logger().warning( 'caught exception (ignoring item): %s, source: %s, xml: %s', e, v['source_filename'], v['xml_filename'], exc_info=e)), error_count=MetricCounters.CONVERT_LXML_TO_SVG_ANNOT_ERROR), MetricCounters.PAGE, lambda v: len(v['svg_pages']))) if opt.save_svg: _ = (annotation_results | "SaveSvgPages" >> TransformAndLog( beam.Map(lambda v: save_svg_roots( FileSystems.join( opt.output_path, change_ext( relative_path(opt.base_data_path, v['source_filename'] ), None, '.svg.zip')), v['svg_pages'])), log_fn=lambda x: get_logger().info('saved result: %s', x))) if opt.annotation_evaluation_csv or opt.min_annotation_percentage: annotation_evaluation_results = ( annotation_results | "EvaluateAnnotations" >> TransformAndLog( beam.Map(lambda v: remove_keys_from_dict( extend_dict( v, { 'annotation_evaluation': evaluate_document_by_page( SvgStructuredDocument(v['svg_pages'])) }), None if opt.min_annotation_percentage else {'svg_pages'})), log_fn=lambda x: get_logger().info( 'annotation evaluation result: %s: %s', x[ 'source_filename'], x['annotation_evaluation']))) if opt.save_block_png or opt.save_tfrecords: color_map = parse_color_map_from_file(opt.color_map) with_block_png_pages = ( (annotation_evaluation_results if opt.min_annotation_percentage else annotation_results) | "GenerateBlockPng" >> beam.Map(lambda v: remove_keys_from_dict( extend_dict( v, { 'block_png_pages': [ svg_page_to_blockified_png_bytes( svg_page, color_map, image_size=image_size) for svg_page in v['svg_pages'] ] }), {'svg_pages'}))) if opt.save_block_png: _ = (with_block_png_pages | "SaveBlockPng" >> TransformAndLog( beam.Map(lambda v: save_pages( FileSystems.join( opt.output_path, change_ext( relative_path(opt.base_data_path, v[ 'source_filename']), None, '.block-png.zip')), '.png', v['block_png_pages'])), log_fn=lambda x: get_logger().info('saved result: %s', x))) if opt.save_tfrecords: if opt.min_annotation_percentage: filtered_pages = ( with_block_png_pages | "FilterPages" >> TransformAndCount( beam.Map(lambda v: filter_list_props_by_indices( v, get_page_indices_with_min_annotation_percentage( v['annotation_evaluation'], opt. min_annotation_percentage), {'pdf_png_pages', 'block_png_pages'})), MetricCounters.FILTERED_PAGE, lambda v: len(v['block_png_pages']))) else: filtered_pages = with_block_png_pages _ = (filtered_pages | "WriteTFRecords" >> WritePropsToTFRecord( FileSystems.join(opt.output_path, 'data'), lambda v: ({ 'input_uri': v['source_filename'] + '#page%d' % (first_page + i), 'input_image': pdf_png_page, 'annotation_uri': (v['source_filename'] + '.annot' + '#page%d' % (first_page + i)), 'annotation_image': block_png_page, 'page_no': first_page + i } for i, pdf_png_page, block_png_page in zip( range(len(v['pdf_png_pages'])), v['pdf_png_pages'], v[ 'block_png_pages'])))) if opt.annotation_evaluation_csv: annotation_evaluation_csv_name, annotation_evaluation_ext = ( os.path.splitext(opt.annotation_evaluation_csv)) _ = ( # flake8: noqa annotation_evaluation_results | "FlattenAnotationEvaluationResults" >> beam.FlatMap(lambda v: to_annotation_evaluation_csv_dict_rows( v['annotation_evaluation'], document=basename(v['source_filename']))) | "WriteAnnotationEvaluationToCsv" >> WriteDictCsv( join_if_relative_path(opt.output_path, annotation_evaluation_csv_name), file_name_suffix=annotation_evaluation_ext, columns=DEFAULT_EVALUATION_COLUMNS))