コード例 #1
0
 def test_multiply_float64(self):
     x = np.asarray(np.random.rand(4, 4), np.float64)
     y = np.asarray(np.random.rand(4, 4), np.float64)
     x_gpu = gpuarray.to_gpu(x)
     y_gpu = gpuarray.to_gpu(y)
     z_gpu = linalg.multiply(x_gpu, y_gpu)
     assert np.allclose(x * y, z_gpu.get())
コード例 #2
0
ファイル: test_linalg.py プロジェクト: Lurkman/scikits.cuda
 def test_multiply_complex128(self):
     x = np.asarray(np.random.rand(4, 4) + 1j*np.random.rand(4, 4), np.complex128)
     y = np.asarray(np.random.rand(4, 4) + 1j*np.random.rand(4, 4), np.complex128)
     x_gpu = gpuarray.to_gpu(x)
     y_gpu = gpuarray.to_gpu(y)
     z_gpu = linalg.multiply(x_gpu, y_gpu)
     assert np.allclose(x*y, z_gpu.get())   
コード例 #3
0
ファイル: test_linalg.py プロジェクト: Lurkman/scikits.cuda
 def test_multiply_float64(self):
     x = np.asarray(np.random.rand(4, 4), np.float64)
     y = np.asarray(np.random.rand(4, 4), np.float64)
     x_gpu = gpuarray.to_gpu(x)
     y_gpu = gpuarray.to_gpu(y)
     z_gpu = linalg.multiply(x_gpu, y_gpu)
     assert np.allclose(x*y, z_gpu.get())   
コード例 #4
0
 def test_multiply_complex128(self):
     x = np.asarray(
         np.random.rand(4, 4) + 1j * np.random.rand(4, 4), np.complex128)
     y = np.asarray(
         np.random.rand(4, 4) + 1j * np.random.rand(4, 4), np.complex128)
     x_gpu = gpuarray.to_gpu(x)
     y_gpu = gpuarray.to_gpu(y)
     z_gpu = linalg.multiply(x_gpu, y_gpu)
     assert np.allclose(x * y, z_gpu.get())
コード例 #5
0
 def _impl_test_multiply(self, N, dtype):
     mk_matrix = lambda N, dtype: np.asarray(np.random.rand(N, N), dtype)
     x = mk_matrix(N, dtype)
     y = mk_matrix(N, dtype)
     if np.iscomplexobj(x):
         x += 1j * mk_matrix(N, dtype)
         y += 1j * mk_matrix(N, dtype)
     x_gpu = gpuarray.to_gpu(x)
     y_gpu = gpuarray.to_gpu(y)
     z_gpu = linalg.multiply(x_gpu, y_gpu)
     assert np.allclose(x * y, z_gpu.get())
コード例 #6
0
ファイル: test_linalg.py プロジェクト: stonexjr/scikits.cuda
 def impl_test_multiply(self, N, dtype):
     mk_matrix = lambda N, dtype: np.asarray(np.random.rand(N, N), dtype)
     x = mk_matrix(N, dtype)
     y = mk_matrix(N, dtype)
     if np.iscomplexobj(x):
         x += 1j * mk_matrix(N, dtype)
         y += 1j * mk_matrix(N, dtype)
     x_gpu = gpuarray.to_gpu(x)
     y_gpu = gpuarray.to_gpu(y)
     z_gpu = linalg.multiply(x_gpu, y_gpu)
     assert np.allclose(x * y, z_gpu.get())