コード例 #1
0
def test_lasso_zero():
    """Check that the sparse lasso can handle zero data without crashing"""
    X = sparse.csc_matrix((3, 1))
    y = [0, 0, 0]
    T = np.array([[1], [2], [3]])
    clf = SparseLasso().fit(X, y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0])
    assert_array_almost_equal(pred, [0, 0, 0])
    assert_almost_equal(clf.dual_gap_,  0)
コード例 #2
0
def test_lasso_zero():
    """Check that the sparse lasso can handle zero data without crashing"""
    X = sparse.csc_matrix((3, 1))
    y = [0, 0, 0]
    T = np.array([[1], [2], [3]])
    clf = SparseLasso().fit(X, y)
    pred = clf.predict(T)
    assert_array_almost_equal(clf.coef_, [0])
    assert_array_almost_equal(pred, [0, 0, 0])
    assert_almost_equal(clf.dual_gap_, 0)
コード例 #3
0
def test_sparse_lasso_not_as_toy_dataset():
    n_samples, n_features, max_iter = 100, 100, 1000
    n_informative = 10

    X, y = make_sparse_data(n_samples, n_features, n_informative)

    X_train, X_test = X[n_samples / 2:], X[:n_samples / 2]
    y_train, y_test = y[n_samples / 2:], y[:n_samples / 2]

    s_clf = SparseLasso(alpha=0.1, fit_intercept=False)
    s_clf.fit(X_train, y_train, max_iter=max_iter, tol=1e-7)
    assert_almost_equal(s_clf.dual_gap_, 0, 4)
    assert s_clf.score(X_test, y_test) > 0.85

    # check the convergence is the same as the dense version
    d_clf = DenseLasso(alpha=0.1, fit_intercept=False)
    d_clf.fit(X_train, y_train, max_iter=max_iter, tol=1e-7)
    assert_almost_equal(d_clf.dual_gap_, 0, 4)
    assert d_clf.score(X_test, y_test) > 0.85

    # check that the coefs are sparse
    assert_equal(np.sum(s_clf.coef_ != 0.0), n_informative)
コード例 #4
0
def test_sparse_lasso_not_as_toy_dataset():
    n_samples, n_features, max_iter = 100, 100, 1000
    n_informative = 10

    X, y = make_sparse_data(n_samples, n_features, n_informative)

    X_train, X_test = X[n_samples / 2:], X[:n_samples / 2]
    y_train, y_test = y[n_samples / 2:], y[:n_samples / 2]

    s_clf = SparseLasso(alpha=0.1, fit_intercept=False)
    s_clf.fit(X_train, y_train, max_iter=max_iter, tol=1e-7)
    assert_almost_equal(s_clf.dual_gap_, 0, 4)
    assert s_clf.score(X_test, y_test) > 0.85

    # check the convergence is the same as the dense version
    d_clf = DenseLasso(alpha=0.1, fit_intercept=False)
    d_clf.fit(X_train, y_train, max_iter=max_iter, tol=1e-7)
    assert_almost_equal(d_clf.dual_gap_, 0, 4)
    assert d_clf.score(X_test, y_test) > 0.85

    # check that the coefs are sparse
    assert_equal(np.sum(s_clf.coef_ != 0.0), n_informative)