コード例 #1
0
ファイル: test_arma.py プロジェクト: takluyver/statsmodels
def test_compare_arma():
    #this is a preliminary test to compare arma_kf, arma_cond_ls and arma_cond_mle
    #the results returned by the fit methods are incomplete
    #for now without random.seed

    #np.random.seed(9876565)
    x = fa.ArmaFft([1, -0.5], [1., 0.4], 40).generate_sample(size=200,
            burnin=1000)

# this used kalman filter through descriptive
#    d = ARMA(x)
#    d.fit((1,1), trend='nc')
#    dres = d.res

    modkf = ARMA(x)
    ##rkf = mkf.fit((1,1))
    ##rkf.params
    reskf = modkf.fit((1,1), trend='nc', disp=-1)
    dres = reskf

    modc = Arma(x)
    resls = modc.fit(order=(1,1))
    rescm = modc.fit_mle(order=(1,1), start_params=[0.4,0.4, 1.], disp=0)

    #decimal 1 corresponds to threshold of 5% difference
    #still different sign  corrcted
    #assert_almost_equal(np.abs(resls[0] / d.params), np.ones(d.params.shape), decimal=1)
    assert_almost_equal(resls[0] / dres.params, np.ones(dres.params.shape),
        decimal=1)
    #rescm also contains variance estimate as last element of params

    #assert_almost_equal(np.abs(rescm.params[:-1] / d.params), np.ones(d.params.shape), decimal=1)
    assert_almost_equal(rescm.params[:-1] / dres.params, np.ones(dres.params.shape), decimal=1)
コード例 #2
0
def test_compare_arma():
    #this is a preliminary test to compare arma_kf, arma_cond_ls and arma_cond_mle
    #the results returned by the fit methods are incomplete
    #for now without random.seed

    #np.random.seed(9876565)
    x = fa.ArmaFft([1, -0.5], [1., 0.4], 40).generate_sample(size=200,
            burnin=1000)

# this used kalman filter through descriptive
#    d = ARMA(x)
#    d.fit((1,1), trend='nc')
#    dres = d.res

    modkf = ARMA(x)
    ##rkf = mkf.fit((1,1))
    ##rkf.params
    reskf = modkf.fit((1,1), trend='nc', disp=-1)
    dres = reskf

    modc = Arma(x)
    resls = modc.fit(order=(1,1))
    rescm = modc.fit_mle(order=(1,1), start_params=[0.4,0.4, 1.], disp=0)

    #decimal 1 corresponds to threshold of 5% difference
    #still different sign  corrcted
    #assert_almost_equal(np.abs(resls[0] / d.params), np.ones(d.params.shape), decimal=1)
    assert_almost_equal(resls[0] / dres.params, np.ones(dres.params.shape),
        decimal=1)
    #rescm also contains variance estimate as last element of params

    #assert_almost_equal(np.abs(rescm.params[:-1] / d.params), np.ones(d.params.shape), decimal=1)
    assert_almost_equal(rescm.params[:-1] / dres.params, np.ones(dres.params.shape), decimal=1)
コード例 #3
0
t1=time()
print "CSS MLE - ARMA Class"
arma2.fit(order=(2,2), trend='nc', method="css")
t2=time()
arma2.llf = arma2.loglike_css(arma2._invtransparams(arma2.params))
print "params: ", arma2.params
print "sigma: ", arma2.sigma2**.5
results += ["css kalmanf", arma2.params, arma2.sigma2**.5, arma2.llf]
print 'time used:', t2-t1

print "Arma.fit_mle results"
# have to set nar and nma manually
arma1.nar = 2
arma1.nma = 2
t2=time()
ret = arma1.fit_mle()
t3=time()
print "params, first 4, sigma, last 1 ", ret.params
results += ["Arma.fit_mle ", ret.params[:4], ret.params[-1], ret.llf]
print 'time used:', t3-t2

print "Arma.fit method = \"ls\""
t3=time()
ret2 = arma1.fit(order=(2,0,2), method="ls")
t4=time()
print ret2[0]
results += ["Arma.fit ls", ret2[0]]
print 'time used:', t4-t3

print "Arma.fit method = \"CLS\""
t4=time()
コード例 #4
0
from scikits.statsmodels.tsa.arima_process import arma_generate_sample

examples = ['arma']
if 'arma' in examples:

    print "\nExample 1"
    print '----------'
    ar = [1.0, -0.8]
    ma = [1.0, 0.5]
    y1 = arma_generate_sample(ar, ma, 1000, 0.1)
    y1 -= y1.mean()  #no mean correction/constant in estimation so far

    arma1 = Arma(y1)
    arma1.nar = 1
    arma1.nma = 1
    arma1res = arma1.fit_mle(order=(1, 1), method='fmin')
    print arma1res.params

    #Warning need new instance otherwise results carry over
    arma2 = Arma(y1)
    arma2.nar = 1
    arma2.nma = 1
    res2 = arma2.fit(method='bfgs')
    print res2.params
    print res2.model.hessian(res2.params)
    print ndt.Hessian(arma1.loglike, stepMax=1e-2)(res2.params)
    arest = tsa.arima.ARIMA(y1)
    resls = arest.fit((1, 0, 1))
    print resls[0]
    print resls[1]
コード例 #5
0
from scikits.statsmodels.tsa.arima_process import arma_generate_sample

examples = ['arma']
if 'arma' in examples:

    print "\nExample 1"
    print '----------'
    ar = [1.0, -0.8]
    ma = [1.0,  0.5]
    y1 = arma_generate_sample(ar,ma,1000,0.1)
    y1 -= y1.mean() #no mean correction/constant in estimation so far

    arma1 = Arma(y1)
    arma1.nar = 1
    arma1.nma = 1
    arma1res = arma1.fit_mle(order=(1,1), method='fmin')
    print arma1res.params

    #Warning need new instance otherwise results carry over
    arma2 = Arma(y1)
    arma2.nar = 1
    arma2.nma = 1
    res2 = arma2.fit(method='bfgs')
    print res2.params
    print res2.model.hessian(res2.params)
    print ndt.Hessian(arma1.loglike, stepMax=1e-2)(res2.params)
    arest = tsa.arima.ARIMA(y1)
    resls = arest.fit((1,0,1))
    print resls[0]
    print resls[1]
コード例 #6
0
import scikits.statsmodels.sandbox.tsa.fftarma as fa
from scikits.statsmodels.tsa.descriptivestats import TsaDescriptive
from scikits.statsmodels.tsa.arma_mle import Arma

x = fa.ArmaFft([1, -0.5], [1., 0.4], 40).generate_sample(size=200, burnin=1000)
d = TsaDescriptive(x)
d.plot4()

#d.fit(order=(1,1))
d.fit((1,1), trend='nc')
print d.res.params

modc = Arma(x)
resls = modc.fit(order=(1,1))
print resls[0]
rescm = modc.fit_mle(order=(1,1), start_params=[-0.4,0.4, 1.])
print rescm.params

#decimal 1 corresponds to threshold of 5% difference
assert_almost_equal(resls[0] / d.res.params, 1, decimal=1)
assert_almost_equal(rescm.params[:-1] / d.res.params, 1, decimal=1)
#copied to tsa.tests

plt.figure()
plt.plot(x, 'b-o')
plt.plot(modc.predicted(), 'r-')
plt.figure()
plt.plot(modc.error_estimate)
#plt.show()

from scikits.statsmodels.miscmodels.tmodel import TArma
コード例 #7
0
import scikits.statsmodels.sandbox.tsa.fftarma as fa
from scikits.statsmodels.tsa.descriptivestats import TsaDescriptive
from scikits.statsmodels.tsa.arma_mle import Arma

x = fa.ArmaFft([1, -0.5], [1., 0.4], 40).generate_sample(size=200, burnin=1000)
d = TsaDescriptive(x)
d.plot4()

#d.fit(order=(1,1))
d.fit((1,1), trend='nc')
print d.res.params

modc = Arma(x)
resls = modc.fit(order=(1,1))
print resls[0]
rescm = modc.fit_mle(order=(1,1), start_params=[-0.4,0.4, 1.])
print rescm.params

#decimal 1 corresponds to threshold of 5% difference
assert_almost_equal(resls[0] / d.res.params, 1, decimal=1)
assert_almost_equal(rescm.params[:-1] / d.res.params, 1, decimal=1)
#copied to tsa.tests

plt.figure()
plt.plot(x, 'b-o')
plt.plot(modc.predicted(), 'r-')
plt.figure()
plt.plot(modc.error_estimate)
#plt.show()

from scikits.statsmodels.miscmodels.tmodel import TArma
コード例 #8
0
                          #areste.var()]
                          np.sqrt(res_ols.scale)]
#need to iterate, ar1 too large ma terms too small
#fix large parameters, if hannan_rissannen are too large
start_params_mle[:-1] = (np.sign(start_params_mle[:-1])
                         * np.minimum(np.abs(start_params_mle[:-1]),0.75))


print 'conditional least-squares'

#print rhohat2
print 'with mle'
arest2.nar = 2
arest2.nma = 2
#
res = arest2.fit_mle(start_params=start_params_mle, method='nm') #no order in fit
print res.params
rhohat2, cov_x2a, infodict, mesg, ier = arest2.fit((2,2))
print '\nARIMA_old'
arest = ARIMA_old(y22)
rhohat1, cov_x1, infodict, mesg, ier = arest.fit((2,0,2))
print rhohat1
print np.sqrt(np.diag(cov_x1))
err1 = arest.errfn(x=y22)
print np.var(err1)
print 'bse ls, formula  not checked'
print np.sqrt(np.diag(cov_x1))*err1.std()
print 'bsejac for mle'
#print arest2.bsejac
#TODO:check bsejac raises singular matrix linalg error
#in model.py line620: return np.linalg.inv(np.dot(jacv.T, jacv))