コード例 #1
0
    def __init__(self, model, P=None, periods=10, order=None):
        self.model = model
        self.periods = periods
        self.neqs, self.lags, self.T = model.neqs, model.k_ar, model.nobs

        self.order = order

        if P is None:
            sigma = model.sigma_u

            # TODO, may be difficult at the moment
            # if order is not None:
            #     indexer = [model.get_eq_index(name) for name in order]
            #     sigma = sigma[:, indexer][indexer, :]

            #     if sigma.shape != model.sigma_u.shape:
            #         raise ValueError('variable order is wrong length')

            P = la.cholesky(sigma)

        self.P = P

        self.irfs = model.ma_rep(periods)
        self.orth_irfs = model.orth_ma_rep(periods)

        self.cum_effects = self.irfs.cumsum(axis=0)
        self.orth_cum_effects = self.orth_irfs.cumsum(axis=0)

        self.lr_effects = model.long_run_effects()
        self.orth_lr_effects = np.dot(model.long_run_effects(), P)

        # auxiliary stuff
        self._A = util.comp_matrix(model.coefs)
コード例 #2
0
ファイル: irf.py プロジェクト: chrisjordansquire/statsmodels
    def __init__(self, model, P=None, periods=10, order=None):
        self.model = model
        self.periods = periods
        self.neqs, self.lags, self.T  = model.neqs, model.k_ar, model.nobs

        self.order = order

        if P is None:
            sigma = model.sigma_u

            # TODO, may be difficult at the moment
            # if order is not None:
            #     indexer = [model.get_eq_index(name) for name in order]
            #     sigma = sigma[:, indexer][indexer, :]

            #     if sigma.shape != model.sigma_u.shape:
            #         raise ValueError('variable order is wrong length')

            P = la.cholesky(sigma)

        self.P = P

        self.irfs = model.ma_rep(periods)
        self.orth_irfs = model.orth_ma_rep(periods)

        self.cum_effects = self.irfs.cumsum(axis=0)
        self.orth_cum_effects = self.orth_irfs.cumsum(axis=0)

        self.lr_effects = model.long_run_effects()
        self.orth_lr_effects = np.dot(model.long_run_effects(), P)

        # auxiliary stuff
        self._A = util.comp_matrix(model.coefs)
コード例 #3
0
def is_stable(coefs, verbose=False):
    """
    Determine stability of VAR(p) system by examining the eigenvalues of the
    VAR(1) representation

    Parameters
    ----------
    coefs : ndarray (p x k x k)

    Returns
    -------
    is_stable : bool
    """
    A_var1 = util.comp_matrix(coefs)
    eigs = np.linalg.eigvals(A_var1)

    if verbose:
        print 'Eigenvalues of VAR(1) rep'
        for val in np.abs(eigs):
            print val

    return (np.abs(eigs) <= 1).all()
コード例 #4
0
def is_stable(coefs, verbose=False):
    """
    Determine stability of VAR(p) system by examining the eigenvalues of the
    VAR(1) representation

    Parameters
    ----------
    coefs : ndarray (p x k x k)

    Returns
    -------
    is_stable : bool
    """
    A_var1 = util.comp_matrix(coefs)
    eigs = np.linalg.eigvals(A_var1)

    if verbose:
        print 'Eigenvalues of VAR(1) rep'
        for val in np.abs(eigs):
            print val

    return (np.abs(eigs) <= 1).all()
コード例 #5
0
def _var_acf(coefs, sig_u):
    """
    Compute autocovariance function ACF_y(h) for h=1,...,p

    Notes
    -----
    Lutkepohl (2005) p.29
    """
    p, k, k2 = coefs.shape
    assert(k == k2)

    A = util.comp_matrix(coefs)
    # construct VAR(1) noise covariance
    SigU = np.zeros((k*p, k*p))
    SigU[:k,:k] = sig_u

    # vec(ACF) = (I_(kp)^2 - kron(A, A))^-1 vec(Sigma_U)
    vecACF = L.solve(np.eye((k*p)**2) - np.kron(A, A), vec(SigU))

    acf = unvec(vecACF)
    acf = acf[:k].T.reshape((p, k, k))

    return acf
コード例 #6
0
def _var_acf(coefs, sig_u):
    """
    Compute autocovariance function ACF_y(h) for h=1,...,p

    Notes
    -----
    Lutkepohl (2005) p.29
    """
    p, k, k2 = coefs.shape
    assert (k == k2)

    A = util.comp_matrix(coefs)
    # construct VAR(1) noise covariance
    SigU = np.zeros((k * p, k * p))
    SigU[:k, :k] = sig_u

    # vec(ACF) = (I_(kp)^2 - kron(A, A))^-1 vec(Sigma_U)
    vecACF = L.solve(np.eye((k * p)**2) - np.kron(A, A), vec(SigU))

    acf = unvec(vecACF)
    acf = acf[:k].T.reshape((p, k, k))

    return acf