コード例 #1
0
ファイル: test_pilutil.py プロジェクト: quanpower/scipy
    def test_imsave(self):
        picdir = os.path.join(datapath, "data")
        for png in glob.iglob(picdir + "/*.png"):
            with suppress_warnings() as sup:
                # PIL causes a Py3k ResourceWarning
                sup.filter(message="unclosed file")
                img = misc.imread(png)
            tmpdir = tempfile.mkdtemp()
            try:
                fn1 = os.path.join(tmpdir, 'test.png')
                fn2 = os.path.join(tmpdir, 'testimg')
                with suppress_warnings() as sup:
                    # PIL causes a Py3k ResourceWarning
                    sup.filter(message="unclosed file")
                    misc.imsave(fn1, img)
                    misc.imsave(fn2, img, 'PNG')

                with suppress_warnings() as sup:
                    # PIL causes a Py3k ResourceWarning
                    sup.filter(message="unclosed file")
                    data1 = misc.imread(fn1)
                    data2 = misc.imread(fn2)
                assert_allclose(data1, img)
                assert_allclose(data2, img)
                assert_equal(data1.shape, img.shape)
                assert_equal(data2.shape, img.shape)
            finally:
                shutil.rmtree(tmpdir)
コード例 #2
0
ファイル: test_zeros.py プロジェクト: ElDeveloper/scipy
def test_zero_der_nz_dp():
    """Test secant method with a non-zero dp, but an infinite newton step"""
    # pick a symmetrical functions and choose a point on the side that with dx
    # makes a secant that is a flat line with zero slope, EG: f = (x - 100)**2,
    # which has a root at x = 100 and is symmetrical around the line x = 100
    # we have to pick a really big number so that it is consistently true
    # now find a point on each side so that the secant has a zero slope
    dx = np.finfo(float).eps ** 0.33
    # 100 - p0 = p1 - 100 = p0 * (1 + dx) + dx - 100
    # -> 200 = p0 * (2 + dx) + dx
    p0 = (200.0 - dx) / (2.0 + dx)
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning, "RMS of")
        x = zeros.newton(lambda y: (y - 100.0)**2, x0=[p0] * 10)
    assert_allclose(x, [100] * 10)
    # test scalar cases too
    p0 = (2.0 - 1e-4) / (2.0 + 1e-4)
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning, "Tolerance of")
        x = zeros.newton(lambda y: (y - 1.0) ** 2, x0=p0)
    assert_allclose(x, 1)
    p0 = (-2.0 + 1e-4) / (2.0 + 1e-4)
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning, "Tolerance of")
        x = zeros.newton(lambda y: (y + 1.0) ** 2, x0=p0)
    assert_allclose(x, -1)
コード例 #3
0
ファイル: test_iterative.py プロジェクト: ElDeveloper/scipy
    def test_callback(self):

        def store_residual(r, rvec):
            rvec[rvec.nonzero()[0].max()+1] = r

        # Define, A,b
        A = csr_matrix(array([[-2,1,0,0,0,0],[1,-2,1,0,0,0],[0,1,-2,1,0,0],[0,0,1,-2,1,0],[0,0,0,1,-2,1],[0,0,0,0,1,-2]]))
        b = ones((A.shape[0],))
        maxiter = 1
        rvec = zeros(maxiter+1)
        rvec[0] = 1.0
        callback = lambda r:store_residual(r, rvec)
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")
            x,flag = gmres(A, b, x0=zeros(A.shape[0]), tol=1e-16, maxiter=maxiter, callback=callback)

        # Expected output from Scipy 1.0.0
        assert_allclose(rvec, array([1.0, 0.81649658092772603]), rtol=1e-10)

        # Test preconditioned callback
        M = 1e-3 * np.eye(A.shape[0])
        rvec = zeros(maxiter+1)
        rvec[0] = 1.0
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")
            x, flag = gmres(A, b, M=M, tol=1e-16, maxiter=maxiter, callback=callback)

        # Expected output from Scipy 1.0.0 (callback has preconditioned residual!)
        assert_allclose(rvec, array([1.0, 1e-3 * 0.81649658092772603]), rtol=1e-10)
コード例 #4
0
def test_moments(distname, arg, normalization_ok, higher_ok):
    try:
        distfn = getattr(stats, distname)
    except TypeError:
        distfn = distname
        distname = 'rv_histogram_instance'

    with suppress_warnings() as sup:
        sup.filter(IntegrationWarning, "The integral is probably divergent, or slowly convergent.")
        m, v, s, k = distfn.stats(*arg, moments='mvsk')

    if normalization_ok:
        check_normalization(distfn, arg, distname)

    if higher_ok:
        check_mean_expect(distfn, arg, m, distname)
        with suppress_warnings() as sup:
            sup.filter(IntegrationWarning,
                       "The integral is probably divergent, or slowly convergent.")
            check_skew_expect(distfn, arg, m, v, s, distname)
            check_var_expect(distfn, arg, m, v, distname)
            check_kurt_expect(distfn, arg, m, v, k, distname)

    check_loc_scale(distfn, arg, m, v, distname)
    check_moment(distfn, arg, m, v, distname)
コード例 #5
0
ファイル: test_sf_error.py プロジェクト: Brucechen13/scipy
def test_errprint():
    with suppress_warnings() as sup:
        sup.filter(DeprecationWarning, "`errprint` is deprecated!")
        flag = sc.errprint(True)

    try:
        assert_(isinstance(flag, bool))
        with pytest.warns(sc.SpecialFunctionWarning):
            sc.loggamma(0)
    finally:
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, "`errprint` is deprecated!")
            sc.errprint(flag)
コード例 #6
0
ファイル: test_pilutil.py プロジェクト: BranYang/scipy
 def test_bytescale_cscale_lowhigh(self):
     a = np.arange(10)
     with suppress_warnings() as sup:
         sup.filter(DeprecationWarning)
         actual = misc.bytescale(a, cmin=3, cmax=6, low=100, high=200)
     expected = [100, 100, 100, 100, 133, 167, 200, 200, 200, 200]
     assert_equal(actual, expected)
コード例 #7
0
ファイル: test_pilutil.py プロジェクト: BranYang/scipy
 def test_bytescale(self):
     x = np.array([0, 1, 2], np.uint8)
     y = np.array([0, 1, 2])
     with suppress_warnings() as sup:
         sup.filter(DeprecationWarning)
         assert_equal(misc.bytescale(x), x)
         assert_equal(misc.bytescale(y), [0, 128, 255])
コード例 #8
0
ファイル: test_pilutil.py プロジェクト: BranYang/scipy
def test_imread_indexed_png():
    # The file `foo3x5x4indexed.png` was created with this array
    # (3x5 is (height)x(width)):
    data = np.array([[[127, 0, 255, 255],
                      [127, 0, 255, 255],
                      [127, 0, 255, 255],
                      [127, 0, 255, 255],
                      [127, 0, 255, 255]],
                     [[192, 192, 255, 0],
                      [192, 192, 255, 0],
                      [0, 0, 255, 0],
                      [0, 0, 255, 0],
                      [0, 0, 255, 0]],
                     [[0, 31, 255, 255],
                      [0, 31, 255, 255],
                      [0, 31, 255, 255],
                      [0, 31, 255, 255],
                      [0, 31, 255, 255]]], dtype=np.uint8)

    filename = os.path.join(datapath, 'data', 'foo3x5x4indexed.png')
    with open(filename, 'rb') as f:
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning)
            im = misc.imread(f)
    assert_array_equal(im, data)
コード例 #9
0
ファイル: test_pilutil.py プロジェクト: BranYang/scipy
 def test_bytescale_low_equals_high(self):
     a = np.arange(3)
     with suppress_warnings() as sup:
         sup.filter(DeprecationWarning)
         actual = misc.bytescale(a, low=10, high=10)
     expected = [10, 10, 10]
     assert_equal(actual, expected)
コード例 #10
0
ファイル: test_pilutil.py プロジェクト: BranYang/scipy
 def test_bytescale_rounding(self):
     a = np.array([-0.5, 0.5, 1.5, 2.5, 3.5])
     with suppress_warnings() as sup:
         sup.filter(DeprecationWarning)
         actual = misc.bytescale(a, cmin=0, cmax=10, low=0, high=10)
     expected = [0, 1, 2, 3, 4]
     assert_equal(actual, expected)
コード例 #11
0
 def test_spherical_jn_inf_complex(self):
     # https://dlmf.nist.gov/10.52.E3
     n = 7
     x = np.array([-inf + 0j, inf + 0j, inf*(1+1j)])
     with suppress_warnings() as sup:
         sup.filter(RuntimeWarning, "invalid value encountered in multiply")
         assert_allclose(spherical_jn(n, x), np.array([0, 0, inf*(1+1j)]))
コード例 #12
0
ファイル: test_lgmres.py プロジェクト: Kitchi/scipy
    def test_breakdown_underdetermined(self):
        # Should find LSQ solution in the Krylov span in one inner
        # iteration, despite solver breakdown from nilpotent A.
        A = np.array([[0, 1, 1, 1],
                      [0, 0, 1, 1],
                      [0, 0, 0, 1],
                      [0, 0, 0, 0]], dtype=float)

        bs = [
            np.array([1, 1, 1, 1]),
            np.array([1, 1, 1, 0]),
            np.array([1, 1, 0, 0]),
            np.array([1, 0, 0, 0]),
        ]

        for b in bs:
            with suppress_warnings() as sup:
                sup.filter(DeprecationWarning, ".*called without specifying.*")
                xp, info = lgmres(A, b, maxiter=1)
            resp = np.linalg.norm(A.dot(xp) - b)

            K = np.c_[b, A.dot(b), A.dot(A.dot(b)), A.dot(A.dot(A.dot(b)))]
            y, _, _, _ = np.linalg.lstsq(A.dot(K), b, rcond=-1)
            x = K.dot(y)
            res = np.linalg.norm(A.dot(x) - b)

            assert_allclose(resp, res, err_msg=repr(b))
コード例 #13
0
    def test_multiple_constraint_objects(self):
        fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2 + (x[2] - 0.75)**2
        x0 = [2, 0, 1]
        coni = []  # only inequality constraints (can use cobyla)
        methods = ["slsqp", "cobyla", "trust-constr"]

        # mixed old and new
        coni.append([{'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
                     NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])

        coni.append([LinearConstraint([1, -2, 0], -2, np.inf),
                     NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])

        coni.append([NonlinearConstraint(lambda x: x[0] - 2 * x[1] + 2, 0, np.inf),
                     NonlinearConstraint(lambda x: x[0] - x[1], -1, 1)])

        for con in coni:
            funs = {}
            for method in methods:
                with suppress_warnings() as sup:
                    sup.filter(UserWarning)
                    result = minimize(fun, x0, method=method, constraints=con)
                    funs[method] = result.fun
            assert_allclose(funs['slsqp'], funs['trust-constr'], rtol=1e-4)
            assert_allclose(funs['cobyla'], funs['trust-constr'], rtol=1e-4)
コード例 #14
0
ファイル: test_bsplines.py プロジェクト: Brucechen13/scipy
    def test_splev(self):
        xnew, b, b2 = self.xnew, self.b, self.b2

        # check that splev works with 1D array of coefficients
        # for array and scalar `x`
        assert_allclose(splev(xnew, b),
                        b(xnew), atol=1e-15, rtol=1e-15)
        assert_allclose(splev(xnew, b.tck),
                        b(xnew), atol=1e-15, rtol=1e-15)
        assert_allclose([splev(x, b) for x in xnew],
                        b(xnew), atol=1e-15, rtol=1e-15)

        # With n-D coefficients, there's a quirck:
        # splev(x, BSpline) is equivalent to BSpline(x)
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning,
                       "Calling splev.. with BSpline objects with c.ndim > 1 is not recommended.")
            assert_allclose(splev(xnew, b2), b2(xnew), atol=1e-15, rtol=1e-15)

        # However, splev(x, BSpline.tck) needs some transposes. This is because
        # BSpline interpolates along the first axis, while the legacy FITPACK
        # wrapper does list(map(...)) which effectively interpolates along the
        # last axis. Like so:
        sh = tuple(range(1, b2.c.ndim)) + (0,)   # sh = (1, 2, 0)
        cc = b2.c.transpose(sh)
        tck = (b2.t, cc, b2.k)
        assert_allclose(splev(xnew, tck),
                        b2(xnew).transpose(sh), atol=1e-15, rtol=1e-15)
コード例 #15
0
    def test_triangularity_perturbation(self):
        # Experiment (1) of
        # Awad H. Al-Mohy and Nicholas J. Higham (2012)
        # Improved Inverse Scaling and Squaring Algorithms
        # for the Matrix Logarithm.
        A = np.array([
            [3.2346e-1, 3e4, 3e4, 3e4],
            [0, 3.0089e-1, 3e4, 3e4],
            [0, 0, 3.221e-1, 3e4],
            [0, 0, 0, 3.0744e-1]],
            dtype=float)
        A_logm = np.array([
            [-1.12867982029050462e+00, 9.61418377142025565e+04,
             -4.52485573953179264e+09, 2.92496941103871812e+14],
            [0.00000000000000000e+00, -1.20101052953082288e+00,
             9.63469687211303099e+04, -4.68104828911105442e+09],
            [0.00000000000000000e+00, 0.00000000000000000e+00,
             -1.13289322264498393e+00, 9.53249183094775653e+04],
            [0.00000000000000000e+00, 0.00000000000000000e+00,
             0.00000000000000000e+00, -1.17947533272554850e+00]],
            dtype=float)
        assert_allclose(expm(A_logm), A, rtol=1e-4)

        # Perturb the upper triangular matrix by tiny amounts,
        # so that it becomes technically not upper triangular.
        random.seed(1234)
        tiny = 1e-17
        A_logm_perturbed = A_logm.copy()
        A_logm_perturbed[1, 0] = tiny
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "Ill-conditioned.*")
            A_expm_logm_perturbed = expm(A_logm_perturbed)
        rtol = 1e-4
        atol = 100 * tiny
        assert_(not np.allclose(A_expm_logm_perturbed, A, rtol=rtol, atol=atol))
コード例 #16
0
ファイル: test_gcrotmk.py プロジェクト: BranYang/scipy
    def test_cornercase(self):
        np.random.seed(1234)

        # Rounding error may prevent convergence with tol=0 --- ensure
        # that the return values in this case are correct, and no
        # exceptions are raised

        for n in [3, 5, 10, 100]:
            A = 2*eye(n)

            with suppress_warnings() as sup:
                sup.filter(DeprecationWarning, ".*called without specifying.*")
                b = np.ones(n)
                x, info = gcrotmk(A, b, maxiter=10)
                assert_equal(info, 0)
                assert_allclose(A.dot(x) - b, 0, atol=1e-14)

                x, info = gcrotmk(A, b, tol=0, maxiter=10)
                if info == 0:
                    assert_allclose(A.dot(x) - b, 0, atol=1e-14)

                b = np.random.rand(n)
                x, info = gcrotmk(A, b, maxiter=10)
                assert_equal(info, 0)
                assert_allclose(A.dot(x) - b, 0, atol=1e-14)

                x, info = gcrotmk(A, b, tol=0, maxiter=10)
                if info == 0:
                    assert_allclose(A.dot(x) - b, 0, atol=1e-14)
コード例 #17
0
ファイル: test_fitpack2.py プロジェクト: BranYang/scipy
    def test_integral(self):
        x = [1,1,1,2,2,2,4,4,4]
        y = [1,2,3,1,2,3,1,2,3]
        z = array([0,7,8,3,4,7,1,3,4])

        with suppress_warnings() as sup:
            # This seems to fail (ier=1, see ticket 1642).
            sup.filter(UserWarning, "\nThe required storage space")
            lut = SmoothBivariateSpline(x, y, z, kx=1, ky=1, s=0)

        tx = [1,2,4]
        ty = [1,2,3]

        tz = lut(tx, ty)
        trpz = .25*(diff(tx)[:,None]*diff(ty)[None,:]
                    * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
        assert_almost_equal(lut.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz)

        lut2 = SmoothBivariateSpline(x, y, z, kx=2, ky=2, s=0)
        assert_almost_equal(lut2.integral(tx[0], tx[-1], ty[0], ty[-1]), trpz,
                            decimal=0)  # the quadratures give 23.75 and 23.85

        tz = lut(tx[:-1], ty[:-1])
        trpz = .25*(diff(tx[:-1])[:,None]*diff(ty[:-1])[None,:]
                    * (tz[:-1,:-1]+tz[1:,:-1]+tz[:-1,1:]+tz[1:,1:])).sum()
        assert_almost_equal(lut.integral(tx[0], tx[-2], ty[0], ty[-2]), trpz)
コード例 #18
0
ファイル: test_linsolve.py プロジェクト: Juanlu001/scipy
 def test_singular(self):
     A = csc_matrix((5,5), dtype='d')
     b = array([1, 2, 3, 4, 5],dtype='d')
     with suppress_warnings() as sup:
         sup.filter(MatrixRankWarning, "Matrix is exactly singular")
         x = spsolve(A, b)
     assert_(not np.isfinite(x).any())
コード例 #19
0
ファイル: test_iterative.py プロジェクト: ElDeveloper/scipy
def test_reentrancy():
    non_reentrant = [cg, cgs, bicg, bicgstab, gmres, qmr]
    reentrant = [lgmres, minres, gcrotmk]
    for solver in reentrant + non_reentrant:
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")
            _check_reentrancy(solver, solver in reentrant)
コード例 #20
0
ファイル: test_iterative.py プロジェクト: ElDeveloper/scipy
def test_zero_rhs(solver):
    np.random.seed(1234)
    A = np.random.rand(10, 10)
    A = A.dot(A.T) + 10 * np.eye(10)

    b = np.zeros(10)
    tols = np.r_[np.logspace(np.log10(1e-10), np.log10(1e2), 7)]

    for tol in tols:
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")

            x, info = solver(A, b, tol=tol)
            assert_equal(info, 0)
            assert_allclose(x, 0, atol=1e-15)

            x, info = solver(A, b, tol=tol, x0=ones(10))
            assert_equal(info, 0)
            assert_allclose(x, 0, atol=tol)

            if solver is not minres:
                x, info = solver(A, b, tol=tol, atol=0, x0=ones(10))
                if info == 0:
                    assert_allclose(x, 0)

                x, info = solver(A, b, tol=tol, atol=tol)
                assert_equal(info, 0)
                assert_allclose(x, 0, atol=1e-300)

                x, info = solver(A, b, tol=tol, atol=0)
                assert_equal(info, 0)
                assert_allclose(x, 0, atol=1e-300)
コード例 #21
0
ファイル: test_iterative.py プロジェクト: ElDeveloper/scipy
    def test_atol_legacy(self):
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")

            # Check the strange legacy behavior: the tolerance is interpreted
            # as atol, but only for the initial residual
            A = eye(2)
            b = 1e-6 * ones(2)
            x, info = gmres(A, b, tol=1e-5)
            assert_array_equal(x, np.zeros(2))

            A = eye(2)
            b = ones(2)
            x, info = gmres(A, b, tol=1e-5)
            assert_(np.linalg.norm(A.dot(x) - b) <= 1e-5*np.linalg.norm(b))
            assert_allclose(x, b, atol=0, rtol=1e-8)

            rndm = np.random.RandomState(12345)
            A = rndm.rand(30, 30)
            b = 1e-6 * ones(30)
            x, info = gmres(A, b, tol=1e-7, restart=20)
            assert_(np.linalg.norm(A.dot(x) - b) > 1e-7)

        A = eye(2)
        b = 1e-10 * ones(2)
        x, info = gmres(A, b, tol=1e-8, atol=0)
        assert_(np.linalg.norm(A.dot(x) - b) <= 1e-8*np.linalg.norm(b))
コード例 #22
0
ファイル: test_linprog.py プロジェクト: aerval/scipy
    def test_bug_6690(self):
        # https://github.com/scipy/scipy/issues/6690
        A_eq = np.array([[0., 0., 0., 0.93, 0., 0.65, 0., 0., 0.83, 0.]])
        b_eq = np.array([0.9626])
        A_ub = np.array([[0., 0., 0., 1.18, 0., 0., 0., -0.2, 0.,
                          -0.22],
                         [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
                         [0., 0., 0., 0.43, 0., 0., 0., 0., 0., 0.],
                         [0., -1.22, -0.25, 0., 0., 0., -2.06, 0., 0.,
                          1.37],
                         [0., 0., 0., 0., 0., 0., 0., -0.25, 0., 0.]])
        b_ub = np.array([0.615, 0., 0.172, -0.869, -0.022])
        bounds = np.array(
            [[-0.84, -0.97, 0.34, 0.4, -0.33, -0.74, 0.47, 0.09, -1.45, -0.73],
             [0.37, 0.02, 2.86, 0.86, 1.18, 0.5, 1.76, 0.17, 0.32, -0.15]]).T
        c = np.array([-1.64, 0.7, 1.8, -1.06, -1.16,
                      0.26, 2.13, 1.53, 0.66, 0.28])

        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...")
            sup.filter(OptimizeWarning, "Solving system with option...")
            sol = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq,
                          bounds=bounds, method=self.method,
                          options=self.options)
        _assert_success(sol, desired_fun=-1.191)
コード例 #23
0
ファイル: test_linprog.py プロジェクト: aerval/scipy
    def test_network_flow_limited_capacity(self):
        # A network flow problem with supply and demand at nodes
        # and with costs and capacities along directed edges.
        # http://blog.sommer-forst.de/2013/04/10/
        cost = [2, 2, 1, 3, 1]
        bounds = [
            [0, 4],
            [0, 2],
            [0, 2],
            [0, 3],
            [0, 5]]
        n, p = -1, 1
        A_eq = [
            [n, n, 0, 0, 0],
            [p, 0, n, n, 0],
            [0, p, p, 0, n],
            [0, 0, 0, p, p]]
        b_eq = [-4, 0, 0, 4]

        if self.method == "simplex":
            # Including the callback here ensures the solution can be
            # calculated correctly, even when phase 1 terminated
            # with some of the artificial variables as pivots
            # (i.e. basis[:m] contains elements corresponding to
            # the artificial variables)
            res = linprog(c=cost, A_eq=A_eq, b_eq=b_eq, bounds=bounds,
                          method=self.method, options=self.options,
                          callback=lambda x, **kwargs: None)
        else:
            with suppress_warnings() as sup:
                sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...")
                sup.filter(OptimizeWarning, "A_eq does not appear...")
                res = linprog(c=cost, A_eq=A_eq, b_eq=b_eq, bounds=bounds,
                              method=self.method, options=self.options)
        _assert_success(res, desired_fun=14)
コード例 #24
0
ファイル: test_ivp.py プロジェクト: WarrenWeckesser/scipy
def test_integration():
    rtol = 1e-3
    atol = 1e-6
    y0 = [1/3, 2/9]

    for vectorized, method, t_span, jac in product(
            [False, True],
            ['RK23', 'RK45', 'Radau', 'BDF', 'LSODA'],
            [[5, 9], [5, 1]],
            [None, jac_rational, jac_rational_sparse]):

        if vectorized:
            fun = fun_rational_vectorized
        else:
            fun = fun_rational

        with suppress_warnings() as sup:
            sup.filter(UserWarning,
                       "The following arguments have no effect for a chosen solver: `jac`")
            res = solve_ivp(fun, t_span, y0, rtol=rtol,
                            atol=atol, method=method, dense_output=True,
                            jac=jac, vectorized=vectorized)
        assert_equal(res.t[0], t_span[0])
        assert_(res.t_events is None)
        assert_(res.success)
        assert_equal(res.status, 0)

        assert_(res.nfev < 40)

        if method in ['RK23', 'RK45', 'LSODA']:
            assert_equal(res.njev, 0)
            assert_equal(res.nlu, 0)
        else:
            assert_(0 < res.njev < 3)
            assert_(0 < res.nlu < 10)

        y_true = sol_rational(res.t)
        e = compute_error(res.y, y_true, rtol, atol)
        assert_(np.all(e < 5))

        tc = np.linspace(*t_span)
        yc_true = sol_rational(tc)
        yc = res.sol(tc)

        e = compute_error(yc, yc_true, rtol, atol)
        assert_(np.all(e < 5))

        tc = (t_span[0] + t_span[-1]) / 2
        yc_true = sol_rational(tc)
        yc = res.sol(tc)

        e = compute_error(yc, yc_true, rtol, atol)
        assert_(np.all(e < 5))

        # LSODA for some reasons doesn't pass the polynomial through the
        # previous points exactly after the order change. It might be some
        # bug in LSOSA implementation or maybe we missing something.
        if method != 'LSODA':
            assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
コード例 #25
0
ファイル: test_iterative.py プロジェクト: ElDeveloper/scipy
def test_convergence():
    for solver in params.solvers:
        for case in params.cases:
            if solver in case.skip:
                continue
            with suppress_warnings() as sup:
                sup.filter(DeprecationWarning, ".*called without specifying.*")
                check_convergence(solver, case)
コード例 #26
0
ファイル: test_iterative.py プロジェクト: ElDeveloper/scipy
def test_precond_dummy():
    case = params.Poisson1D
    for solver in params.solvers:
        if solver in case.skip:
            continue
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")
            check_precond_dummy(solver, case)
コード例 #27
0
 def test_nearest(self):
     N = 5
     x = arange(N)
     y = arange(N)
     with suppress_warnings() as sup:
         sup.filter(DeprecationWarning, "`nearest` is deprecated")
         assert_allclose(y, nearest(x, y, x+.1))
         assert_allclose(y, nearest(x, y, x-.1))
コード例 #28
0
ファイル: test_windows.py プロジェクト: charris/scipy
 def test_cheb_even_low_attenuation(self):
     cheb_even_low_at_true = array([1.000000, 0.451924, 0.51027,
                                    0.541338, 0.541338, 0.51027,
                                    0.451924, 1.000000])
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_even = windows.chebwin(8, at=-10)
     assert_array_almost_equal(cheb_even, cheb_even_low_at_true, decimal=4)
コード例 #29
0
ファイル: test_linprog.py プロジェクト: aerval/scipy
 def test_magic_square_bug_7044(self):
     # test linprog with a problem with a rank-deficient A_eq matrix
     A, b, c, N = magic_square(3)
     with suppress_warnings() as sup:
         sup.filter(OptimizeWarning, "A_eq does not appear...")
         res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1),
                       method=self.method, options=self.options)
     _assert_success(res, desired_fun=1.730550597)
コード例 #30
0
ファイル: test_windows.py プロジェクト: charris/scipy
 def test_cheb_odd_low_attenuation(self):
     cheb_odd_low_at_true = array([1.000000, 0.519052, 0.586405,
                                   0.610151, 0.586405, 0.519052,
                                   1.000000])
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_odd = windows.chebwin(7, at=10)
     assert_array_almost_equal(cheb_odd, cheb_odd_low_at_true, decimal=4)
コード例 #31
0
 def test_magic_square_sparse_no_presolve(self):
     # test linprog with a problem with a rank-deficient A_eq matrix
     A, b, c, N = magic_square(3)
     with suppress_warnings() as sup:
         sup.filter(MatrixRankWarning, "Matrix is exactly singular")
         sup.filter(OptimizeWarning, "Solving system with option...")
         o = {key: self.options[key] for key in self.options}
         o["presolve"] = False
         res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1),
                       options=o, method=self.method)
     _assert_success(res, desired_fun=1.730550597)
コード例 #32
0
    def test_L3(self):
        # Lampinen ([5]) test problem 3

        def f(x):
            x = np.hstack(([0], x))  # 1-indexed to match reference
            fun = (x[1]**2 + x[2]**2 + x[1] * x[2] - 14 * x[1] - 16 * x[2] +
                   (x[3] - 10)**2 + 4 * (x[4] - 5)**2 + (x[5] - 3)**2 + 2 *
                   (x[6] - 1)**2 + 5 * x[7]**2 + 7 * (x[8] - 11)**2 + 2 *
                   (x[9] - 10)**2 + (x[10] - 7)**2 + 45)
            return fun  # maximize

        A = np.zeros((4, 11))
        A[1, [1, 2, 7, 8]] = -4, -5, 3, -9
        A[2, [1, 2, 7, 8]] = -10, 8, 17, -2
        A[3, [1, 2, 9, 10]] = 8, -2, -5, 2
        A = A[1:, 1:]
        b = np.array([-105, 0, -12])

        def c1(x):
            x = np.hstack(([0], x))  # 1-indexed to match reference
            return [
                3 * x[1] - 6 * x[2] - 12 * (x[9] - 8)**2 + 7 * x[10],
                -3 * (x[1] - 2)**2 - 4 * (x[2] - 3)**2 - 2 * x[3]**2 +
                7 * x[4] + 120, -x[1]**2 - 2 * (x[2] - 2)**2 +
                2 * x[1] * x[2] - 14 * x[5] + 6 * x[6],
                -5 * x[1]**2 - 8 * x[2] - (x[3] - 6)**2 + 2 * x[4] + 40, -0.5 *
                (x[1] - 8)**2 - 2 * (x[2] - 4)**2 - 3 * x[5]**2 + x[6] + 30
            ]

        L = LinearConstraint(A, b, np.inf)
        N = NonlinearConstraint(c1, 0, np.inf)
        bounds = [(-10, 10)] * 10
        constraints = (L, N)

        with suppress_warnings() as sup:
            sup.filter(UserWarning)
            res = differential_evolution(f,
                                         bounds,
                                         seed=1234,
                                         constraints=constraints,
                                         popsize=3)

        x_opt = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574,
                 1.321644, 9.828726, 8.280092, 8.375927)
        f_opt = 24.3062091

        assert_allclose(f(x_opt), f_opt, atol=1e-5)
        assert_allclose(res.x, x_opt, atol=1e-6)
        assert_allclose(res.fun, f_opt, atol=1e-5)
        assert res.success
        assert_(np.all(A @ res.x >= b))
        assert_(np.all(np.array(c1(res.x)) >= 0))
        assert_(np.all(res.x >= np.array(bounds)[:, 0]))
        assert_(np.all(res.x <= np.array(bounds)[:, 1]))
コード例 #33
0
ファイル: test_iterative.py プロジェクト: zywina/scipy
    def test_leftright_precond(self):
        """Check that QMR works with left and right preconditioners"""

        from scipy.sparse.linalg.dsolve import splu
        from scipy.sparse.linalg.interface import LinearOperator

        n = 100

        dat = ones(n)
        A = spdiags([-2*dat, 4*dat, -dat], [-1,0,1],n,n)
        b = arange(n,dtype='d')

        L = spdiags([-dat/2, dat], [-1,0], n, n)
        U = spdiags([4*dat, -dat], [0,1], n, n)

        with suppress_warnings() as sup:
            sup.filter(SparseEfficiencyWarning, "splu requires CSC matrix format")
            L_solver = splu(L)
            U_solver = splu(U)

        def L_solve(b):
            return L_solver.solve(b)

        def U_solve(b):
            return U_solver.solve(b)

        def LT_solve(b):
            return L_solver.solve(b,'T')

        def UT_solve(b):
            return U_solver.solve(b,'T')

        M1 = LinearOperator((n,n), matvec=L_solve, rmatvec=LT_solve)
        M2 = LinearOperator((n,n), matvec=U_solve, rmatvec=UT_solve)

        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning, ".*called without specifying.*")
            x,info = qmr(A, b, tol=1e-8, maxiter=15, M1=M1, M2=M2)

        assert_equal(info,0)
        assert_normclose(A*x, b, tol=1e-8)
コード例 #34
0
 def test_linear2(self):
     N = 3000
     x = arange(N, dtype=float)
     y = ones((100, N)) * arange(N)
     new_x = arange(N) + 0.5
     with suppress_warnings() as sup:
         sup.filter(DeprecationWarning, "`linear` is deprecated")
         new_y = linear(x, y, new_x)
     assert_allclose(new_y[:5, :5],
                     [[0.5, 1.5, 2.5, 3.5, 4.5], [0.5, 1.5, 2.5, 3.5, 4.5],
                      [0.5, 1.5, 2.5, 3.5, 4.5], [0.5, 1.5, 2.5, 3.5, 4.5],
                      [0.5, 1.5, 2.5, 3.5, 4.5]])
コード例 #35
0
ファイル: test_linprog.py プロジェクト: smeichle/scipy
 def test_remove_redundancy_infeasibility(self):
     m, n = 10, 10
     c = np.random.rand(n)
     A0 = np.random.rand(m, n)
     b0 = np.random.rand(m)
     A0[-1, :] = 2 * A0[-2, :]
     b0[-1] *= -1
     with suppress_warnings() as sup:
         sup.filter(OptimizeWarning, "A_eq does not appear...")
         res = linprog(c, A_eq=A0, b_eq=b0,
                       method=self.method, options=self.options)
     _assert_infeasible(res)
コード例 #36
0
def test_docformat():
    with suppress_warnings() as sup:
        sup.filter(category=DeprecationWarning)
        udd = doccer.unindent_dict(doc_dict)
        formatted = doccer.docformat(docstring, udd)
        assert_equal(formatted, filled_docstring)
        single_doc = 'Single line doc %(strtest1)s'
        formatted = doccer.docformat(single_doc, doc_dict)
        # Note - initial indent of format string does not
        # affect subsequent indent of inserted parameter
        assert_equal(formatted, """Single line doc Another test
   with some indent""")
コード例 #37
0
    def test_truncate(self):
        np.random.seed(1234)
        A = np.random.rand(30, 30) + np.eye(30)
        b = np.random.rand(30)

        for truncate in ['oldest', 'smallest']:
            with suppress_warnings() as sup:
                sup.filter(DeprecationWarning, ".*called without specifying.*")
                x, info = gcrotmk(A, b, m=10, k=10, truncate=truncate, tol=1e-4,
                                  maxiter=200)
            assert_equal(info, 0)
            assert_allclose(A.dot(x) - b, 0, atol=1e-3)
コード例 #38
0
ファイル: test_linprog.py プロジェクト: xfLee/scipy
 def test_magic_square_bug_7044(self):
     # test linprog with a problem with a rank-deficient A_eq matrix
     A, b, c, N = magic_square(3)
     with suppress_warnings() as sup:
         sup.filter(OptimizeWarning, "A_eq does not appear...")
         res = linprog(c,
                       A_eq=A,
                       b_eq=b,
                       bounds=(0, 1),
                       method=self.method,
                       options=self.options)
     _assert_success(res, desired_fun=1.730550597)
コード例 #39
0
 def test_padecases_dtype_sparse_complex(self):
     # float32 and complex64 lead to errors in spsolve/UMFpack
     dtype = np.complex128
     for scale in [1e-2, 1e-1, 5e-1, 1, 10]:
         a = scale * speye(3, 3, dtype=dtype, format='csc')
         e = exp(scale) * eye(3, dtype=dtype)
         with suppress_warnings() as sup:
             sup.filter(
                 SparseEfficiencyWarning,
                 "Changing the sparsity structure of a csc_matrix is expensive."
             )
             assert_array_almost_equal_nulp(expm(a).toarray(), e, nulp=100)
コード例 #40
0
def test_ellip_potential():
    def change_coefficient(lambda1, mu, nu, h2, k2):
        x = sqrt(lambda1**2 * mu**2 * nu**2 / (h2 * k2))
        y = sqrt(
            (lambda1**2 - h2) * (mu**2 - h2) * (h2 - nu**2) / (h2 * (k2 - h2)))
        z = sqrt(
            (lambda1**2 - k2) * (k2 - mu**2) * (k2 - nu**2) / (k2 * (k2 - h2)))
        return x, y, z

    def solid_int_ellip(lambda1, mu, nu, n, p, h2, k2):
        return (ellip_harm(h2, k2, n, p, lambda1) *
                ellip_harm(h2, k2, n, p, mu) * ellip_harm(h2, k2, n, p, nu))

    def solid_int_ellip2(lambda1, mu, nu, n, p, h2, k2):
        return (ellip_harm_2(h2, k2, n, p, lambda1) *
                ellip_harm(h2, k2, n, p, mu) * ellip_harm(h2, k2, n, p, nu))

    def summation(lambda1, mu1, nu1, lambda2, mu2, nu2, h2, k2):
        tol = 1e-8
        sum1 = 0
        for n in range(20):
            xsum = 0
            for p in range(1, 2 * n + 2):
                xsum += (4 * pi *
                         (solid_int_ellip(lambda2, mu2, nu2, n, p, h2, k2) *
                          solid_int_ellip2(lambda1, mu1, nu1, n, p, h2, k2)) /
                         (ellip_normal(h2, k2, n, p) * (2 * n + 1)))
            if abs(xsum) < 0.1 * tol * abs(sum1):
                break
            sum1 += xsum
        return sum1, xsum

    def potential(lambda1, mu1, nu1, lambda2, mu2, nu2, h2, k2):
        x1, y1, z1 = change_coefficient(lambda1, mu1, nu1, h2, k2)
        x2, y2, z2 = change_coefficient(lambda2, mu2, nu2, h2, k2)
        res = sqrt((x2 - x1)**2 + (y2 - y1)**2 + (z2 - z1)**2)
        return 1 / res

    pts = [
        (120, sqrt(19), 2, 41, sqrt(17), 2, 15, 25),
        (120, sqrt(16), 3.2, 21, sqrt(11), 2.9, 11, 20),
    ]

    with suppress_warnings() as sup:
        sup.filter(IntegrationWarning, "The occurrence of roundoff error")
        sup.filter(IntegrationWarning, "The maximum number of subdivisions")

        for p in pts:
            err_msg = repr(p)
            exact = potential(*p)
            result, last_term = summation(*p)
            assert_allclose(exact, result, atol=0, rtol=1e-8, err_msg=err_msg)
            assert_(abs(result - exact) < 10 * abs(last_term), err_msg)
コード例 #41
0
def test_intermediate_overlow():
    # Make sure we avoid overflow in situations where cosh/sinh would
    # overflow but the product with sin/cos would not
    sinpi_pts = [complex(1 + 1e-14, 227),
                 complex(1e-35, 250),
                 complex(1e-301, 445)]
    # Data generated with mpmath
    sinpi_std = [complex(-8.113438309924894e+295, -np.inf),
                 complex(1.9507801934611995e+306, np.inf),
                 complex(2.205958493464539e+306, np.inf)]
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning, "invalid value encountered in multiply")
        for p, std in zip(sinpi_pts, sinpi_std):
            assert_allclose(sinpi(p), std)

    # Test for cosine, less interesting because cos(0) = 1.
    p = complex(0.5 + 1e-14, 227)
    std = complex(-8.113438309924894e+295, -np.inf)
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning, "invalid value encountered in multiply")
        assert_allclose(cospi(p), std)
コード例 #42
0
ファイル: test_linprog.py プロジェクト: smeichle/scipy
 def test_alternate_initial_point(self):
     # Test with a rather large problem (400 variables,
     # 40 constraints) generated by https://gist.github.com/denis-bz/8647461
     # use "improved" initial point
     A, b, c = lpgen_2d(20, 20)
     with suppress_warnings() as sup:
         sup.filter(RuntimeWarning, "scipy.linalg.solve\nIll...")
         sup.filter(OptimizeWarning, "Solving system with option...")
         res = linprog(c, A_ub=A, b_ub=b, method=self.method,
                       options={"ip": True, "disp": True})
         # ip code is independent of sparse/dense
     _assert_success(res, desired_fun=-64.049494229)
コード例 #43
0
ファイル: test__plotutils.py プロジェクト: 745698140/test_1
 def test_delaunay(self):
     # Smoke test
     fig = plt.figure()
     obj = Delaunay(self.points)
     s_before = obj.simplices.copy()
     with suppress_warnings() as sup:
         # filter can be removed when matplotlib 1.x is dropped
         sup.filter(message="The ishold function was deprecated in version")
         r = delaunay_plot_2d(obj, ax=fig.gca())
     assert_array_equal(obj.simplices, s_before)  # shouldn't modify
     assert_(r is fig)
     delaunay_plot_2d(obj, ax=fig.gca())
コード例 #44
0
def test_windowfunc_basics():
    for window_name, params in window_funcs:
        window = getattr(windows, window_name)
        with suppress_warnings() as sup:
            sup.filter(UserWarning, "This window is not suitable")
            if window_name in ('slepian', 'hanning'):
                sup.filter(DeprecationWarning)
            # Check symmetry for odd and even lengths
            w1 = window(8, *params, sym=True)
            w2 = window(7, *params, sym=False)
            assert_array_almost_equal(w1[:-1], w2)

            w1 = window(9, *params, sym=True)
            w2 = window(8, *params, sym=False)
            assert_array_almost_equal(w1[:-1], w2)

            # Check that functions run and output lengths are correct
            assert_equal(len(window(6, *params, sym=True)), 6)
            assert_equal(len(window(6, *params, sym=False)), 6)
            assert_equal(len(window(7, *params, sym=True)), 7)
            assert_equal(len(window(7, *params, sym=False)), 7)

            # Check invalid lengths
            assert_raises(ValueError, window, 5.5, *params)
            assert_raises(ValueError, window, -7, *params)

            # Check degenerate cases
            assert_array_equal(window(0, *params, sym=True), [])
            assert_array_equal(window(0, *params, sym=False), [])
            assert_array_equal(window(1, *params, sym=True), [1])
            assert_array_equal(window(1, *params, sym=False), [1])

            # Check dtype
            assert_(window(0, *params, sym=True).dtype == 'float')
            assert_(window(0, *params, sym=False).dtype == 'float')
            assert_(window(1, *params, sym=True).dtype == 'float')
            assert_(window(1, *params, sym=False).dtype == 'float')
            assert_(window(6, *params, sym=True).dtype == 'float')
            assert_(window(6, *params, sym=False).dtype == 'float')

            # Check normalization
            assert_array_less(window(10, *params, sym=True), 1.01)
            assert_array_less(window(10, *params, sym=False), 1.01)
            assert_array_less(window(9, *params, sym=True), 1.01)
            assert_array_less(window(9, *params, sym=False), 1.01)

            # Check that DFT-even spectrum is purely real for odd and even
            assert_allclose(fftpack.fft(window(10, *params, sym=False)).imag,
                            0,
                            atol=1e-14)
            assert_allclose(fftpack.fft(window(11, *params, sym=False)).imag,
                            0,
                            atol=1e-14)
コード例 #45
0
def test_imread():
    lp = os.path.join(os.path.dirname(__file__), 'dots.png')
    with suppress_warnings() as sup:
        # PIL causes a Py3k ResourceWarning
        sup.filter(message="unclosed file")
        sup.filter(DeprecationWarning)
        img = ndi.imread(lp, mode="RGB")
    assert_array_equal(img.shape, (300, 420, 3))

    with suppress_warnings() as sup:
        # PIL causes a Py3k ResourceWarning
        sup.filter(message="unclosed file")
        sup.filter(DeprecationWarning)
        img = ndi.imread(lp, flatten=True)
    assert_array_equal(img.shape, (300, 420))

    with open(lp, 'rb') as fobj:
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning)
            img = ndi.imread(fobj, mode="RGB")
        assert_array_equal(img.shape, (300, 420, 3))
コード例 #46
0
    def test_regression_2359(self):
        # Check regression --- for certain point sets, gradient
        # estimation could end up in an infinite loop
        points = np.load(data_file('estimate_gradients_hang.npy'))
        values = np.random.rand(points.shape[0])
        tri = qhull.Delaunay(points)

        # This should not hang
        with suppress_warnings() as sup:
            sup.filter(interpnd.GradientEstimationWarning,
                       "Gradient estimation did not converge")
            interpnd.estimate_gradients_2d_global(tri, values, maxiter=1)
コード例 #47
0
def do_solve(**kw):
    count[0] = 0
    with suppress_warnings() as sup:
        sup.filter(DeprecationWarning, ".*called without specifying.*")
        x0, flag = lgmres(A,
                          b,
                          x0=zeros(A.shape[0]),
                          inner_m=6,
                          tol=1e-14,
                          **kw)
    count_0 = count[0]
    assert_(allclose(A * x0, b, rtol=1e-12, atol=1e-12), norm(A * x0 - b))
    return x0, count_0
コード例 #48
0
def test_imread_4bit():
    # pattern4bit.png is a 12(h) x 31(w) grayscale image with bit depth 4.
    # The value in row j and column i is maximum(j, i) % 16.
    # When scaled up to 8 bits, the values become [0, 17, 34, ..., 255].
    filename = os.path.join(datapath, 'data', 'pattern4bit.png')
    with open(filename, 'rb') as f:
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning)
            im = misc.imread(f)
    assert_equal(im.dtype, np.uint8)
    j, i = np.meshgrid(np.arange(12), np.arange(31), indexing='ij')
    expected = 17 * (np.maximum(j, i) % 16).astype(np.uint8)
    assert_equal(im, expected)
コード例 #49
0
    def test_linear_constant(self):
        x = [1, 1, 1, 2, 2, 2, 3, 3, 3]
        y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
        z = [3, 3, 3, 3, 3, 3, 3, 3, 3]
        s = 0.1
        tx = [1 + s, 3 - s]
        ty = [1 + s, 3 - s]
        with suppress_warnings() as sup:
            r = sup.record(UserWarning, "\nThe coefficients of the spline")
            lut = LSQBivariateSpline(x, y, z, tx, ty, kx=1, ky=1)
            assert_equal(len(r), 1)

        assert_almost_equal(lut(2, 2), 3.)
コード例 #50
0
ファイル: test_linprog.py プロジェクト: smeichle/scipy
 def test_sparse_solve_options(self):
     A, b, c, N = magic_square(3)
     with suppress_warnings() as sup:
         sup.filter(OptimizeWarning, "A_eq does not appear...")
         sup.filter(OptimizeWarning, "Invalid permc_spec option")
         o = {key: self.options[key] for key in self.options}
         permc_specs = ('NATURAL', 'MMD_ATA', 'MMD_AT_PLUS_A',
                        'COLAMD', 'ekki-ekki-ekki')
         for permc_spec in permc_specs:
             o["permc_spec"] = permc_spec
             res = linprog(c, A_eq=A, b_eq=b, bounds=(0, 1),
                           method=self.method, options=o)
             _assert_success(res, desired_fun=1.730550597)
コード例 #51
0
def check_rvs_broadcast(distfunc, distname, allargs, shape, shape_only, otype):
    np.random.seed(123)
    with suppress_warnings() as sup:
        # frechet_l and frechet_r are deprecated, so all their
        # methods generate DeprecationWarnings.
        sup.filter(category=DeprecationWarning, message=".*frechet_")
        sample = distfunc.rvs(*allargs)
        assert_equal(sample.shape, shape, "%s: rvs failed to broadcast" % distname)
        if not shape_only:
            rvs = np.vectorize(lambda *allargs: distfunc.rvs(*allargs), otypes=otype)
            np.random.seed(123)
            expected = rvs(*allargs)
            assert_allclose(sample, expected, rtol=1e-15)
コード例 #52
0
ファイル: test_wavfile.py プロジェクト: vbasu/scipy
def test_read_4():
    for mmap in [False, True]:
        with suppress_warnings() as sup:
            sup.filter(wavfile.WavFileWarning,
                       "Chunk .non-data. not understood, skipping it")
            rate, data = wavfile.read(datafile('test-48000Hz-2ch-64bit-float-le-wavex.wav'),
                                      mmap=mmap)

        assert_equal(rate, 48000)
        assert_(np.issubdtype(data.dtype, np.float64))
        assert_equal(data.shape, (480, 2))

        del data
コード例 #53
0
def test_itemset_no_segfault_on_readonly():
    # Regression test for ticket #1202.
    # Open the test file in read-only mode.

    filename = pjoin(TEST_DATA_PATH, 'example_1.nc')
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning,
                   "Cannot close a netcdf_file opened with mmap=True, when netcdf_variables or arrays referring to its data still exist")
        with netcdf_file(filename, 'r', mmap=True) as f:
            time_var = f.variables['time']

    # time_var.assignValue(42) should raise a RuntimeError--not seg. fault!
    assert_raises(RuntimeError, time_var.assignValue, 42)
コード例 #54
0
    def test_isintlike(self):
        assert_equal(sputils.isintlike(-4), True)
        assert_equal(sputils.isintlike(np.array(3)), True)
        assert_equal(sputils.isintlike(np.array([3])), False)
        with suppress_warnings() as sup:
            sup.filter(DeprecationWarning,
                       "Inexact indices into sparse matrices are deprecated")
            assert_equal(sputils.isintlike(3.0), True)

        assert_equal(sputils.isintlike(2.5), False)
        assert_equal(sputils.isintlike(1 + 3j), False)
        assert_equal(sputils.isintlike((1,)), False)
        assert_equal(sputils.isintlike((1, 2)), False)
コード例 #55
0
    def test_romb_gh_3731(self):
        # Check that romb makes maximal use of data points
        x = np.arange(2*2*2*2+1)
        y = np.cos(0.2*x)
        val = romb(y)
        val2, err = quad(lambda x: np.cos(0.2*x), x.min(), x.max())
        assert_allclose(val, val2, rtol=1e-8, atol=0)

        # should be equal to romb with 2**k+1 samples
        with suppress_warnings() as sup:
            sup.filter(AccuracyWarning, "divmax .4. exceeded")
            val3 = romberg(lambda x: np.cos(0.2*x), x.min(), x.max(), divmax=4)
        assert_allclose(val, val3, rtol=1e-12, atol=0)
コード例 #56
0
    def test_list_of_problems(self):

        for prob in self.list_of_problems:

            with suppress_warnings() as sup:
                sup.filter(UserWarning)
                result = minimize(prob.fun,
                                  prob.x0,
                                  method=self.method,
                                  bounds=prob.bounds,
                                  constraints=prob.constr)

            assert_array_almost_equal(result.x, prob.x_opt, decimal=3)
コード例 #57
0
    def test_L8(self):
        def f(x):
            x = np.hstack(([0], x))  # 1-indexed to match reference
            fun = 3 * x[1] + 0.000001 * x[1]**3 + 2 * x[2] + 0.000002 / 3 * x[
                2]**3
            return fun

        A = np.zeros((3, 5))
        A[1, [4, 3]] = 1, -1
        A[2, [3, 4]] = 1, -1
        A = A[1:, 1:]
        b = np.array([-.55, -.55])

        def c1(x):
            x = np.hstack(([0], x))  # 1-indexed to match reference
            return [
                1000 * np.sin(-x[3] - 0.25) + 1000 * np.sin(-x[4] - 0.25) +
                894.8 - x[1], 1000 * np.sin(x[3] - 0.25) +
                1000 * np.sin(x[3] - x[4] - 0.25) + 894.8 - x[2],
                1000 * np.sin(x[4] - 0.25) +
                1000 * np.sin(x[4] - x[3] - 0.25) + 1294.8
            ]

        L = LinearConstraint(A, b, np.inf)
        N = NonlinearConstraint(c1, np.full(3, -0.001), np.full(3, 0.001))

        bounds = [(0, 1200)] * 2 + [(-.55, .55)] * 2
        constraints = (L, N)

        with suppress_warnings() as sup:
            sup.filter(UserWarning)
            res = differential_evolution(f,
                                         bounds,
                                         strategy='rand1bin',
                                         seed=1234,
                                         constraints=constraints,
                                         maxiter=5000)

        x_opt = (679.9453, 1026.067, 0.1188764, -0.3962336)
        f_opt = 5126.4981

        assert_allclose(f(x_opt), f_opt, atol=1e-3)
        assert_allclose(res.x[:2], x_opt[:2], atol=2e-3)
        assert_allclose(res.x[2:], x_opt[2:], atol=2e-3)
        assert_allclose(res.fun, f_opt, atol=2e-2)
        assert res.success
        assert_(np.all(A @ res.x >= b))
        assert_(np.all(np.array(c1(res.x)) >= -0.001))
        assert_(np.all(np.array(c1(res.x)) <= 0.001))
        assert_(np.all(res.x >= np.array(bounds)[:, 0]))
        assert_(np.all(res.x <= np.array(bounds)[:, 1]))
コード例 #58
0
 def test_warn_mixed_constraints(self):
     # warns about inefficiency of mixed equality/inequality constraints
     fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2 + (x[2] - 0.75)**2
     cons = NonlinearConstraint(lambda x: [x[0]**2 - x[1], x[1] - x[2]],
                                [1.1, .8], [1.1, 1.4])
     bnds = ((0, None), (0, None), (0, None))
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "delta_grad == 0.0")
         _assert_warns(OptimizeWarning,
                       minimize,
                       fun, (2, 0, 1),
                       method=self.method,
                       bounds=bnds,
                       constraints=cons)
コード例 #59
0
def check_fit_args(distfn, arg, rvs):
    with np.errstate(all='ignore'), suppress_warnings() as sup:
        sup.filter(category=DeprecationWarning, message=".*frechet_")
        sup.filter(category=RuntimeWarning,
                   message="The shape parameter of the erlang")
        sup.filter(category=RuntimeWarning,
                   message="floating point number truncated")
        vals = distfn.fit(rvs)
        vals2 = distfn.fit(rvs, optimizer='powell')
    # Only check the length of the return
    # FIXME: should check the actual results to see if we are 'close'
    #   to what was created --- but what is 'close' enough
    npt.assert_(len(vals) == 2 + len(arg))
    npt.assert_(len(vals2) == 2 + len(arg))
コード例 #60
0
    def test_L4(self):
        # Lampinen ([5]) test problem 4
        def f(x):
            return np.sum(x[:3])

        A = np.zeros((4, 9))
        A[1, [4, 6]] = 0.0025, 0.0025
        A[2, [5, 7, 4]] = 0.0025, 0.0025, -0.0025
        A[3, [8, 5]] = 0.01, -0.01
        A = A[1:, 1:]
        b = np.array([1, 1, 1])

        def c1(x):
            x = np.hstack(([0], x))  # 1-indexed to match reference
            return [
                x[1] * x[6] - 833.33252 * x[4] - 100 * x[1] + 83333.333,
                x[2] * x[7] - 1250 * x[5] - x[2] * x[4] + 1250 * x[4],
                x[3] * x[8] - 1250000 - x[3] * x[5] + 2500 * x[5]
            ]

        L = LinearConstraint(A, -np.inf, 1)
        N = NonlinearConstraint(c1, 0, np.inf)

        bounds = [(100, 10000)] + [(1000, 10000)] * 2 + [(10, 1000)] * 5
        constraints = (L, N)

        with suppress_warnings() as sup:
            sup.filter(UserWarning)
            res = differential_evolution(f,
                                         bounds,
                                         strategy='rand1bin',
                                         seed=1234,
                                         constraints=constraints,
                                         popsize=3)

        f_opt = 7049.248

        x_opt = [
            579.306692, 1359.97063, 5109.9707, 182.0177, 295.601172, 217.9823,
            286.416528, 395.601172
        ]

        assert_allclose(f(x_opt), f_opt, atol=0.001)
        assert_allclose(res.fun, f_opt, atol=0.001)
        assert_allclose(res.x, x_opt, atol=0.002)
        assert res.success
        assert_(np.all(A @ res.x <= b))
        assert_(np.all(np.array(c1(res.x)) >= 0))
        assert_(np.all(res.x >= np.array(bounds)[:, 0]))
        assert_(np.all(res.x <= np.array(bounds)[:, 1]))