コード例 #1
0
ファイル: integrators.py プロジェクト: aarribas/poliastro
    def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
                 rtol=1e-7, atol=1e-12, safety_factor=0.9,
                 min_step_change=0.333, max_step_change=6.0,
                 beta_stabilizer=0.00, max_nsteps=100000,
                 vectorized=False, **extraneous):
        warn_extraneous(extraneous)
        super().__init__(fun, t0, y0, t_bound, vectorized,
                         support_complex=True)
        self.y_old = None
        self.max_step = validate_max_step(max_step)
        self.beta_stabilizer = validate_beta_stabilizer(beta_stabilizer)
        self.max_nsteps = validate_max_nsteps(max_nsteps)
        self.safety_factor = validate_safety_factor(safety_factor)
        self.rtol, self.atol = validate_tol(rtol, atol, self.n)
        self.min_step_change = min_step_change
        self.max_step_change = max_step_change
        self.order = 8

        self.f = self.fun(self.t, self.y)
        self.h_abs = select_initial_step(self.fun, self.t, self.y, self.f, self.direction,
                                         self.order, self.rtol, self.atol)
        self.nfev += 2

        self.n_steps = 0
        self.n_accepted = 0
        self.n_rejected = 0
        self.factor_old = 1e-4  # Lund-stabilization factor
        self.K = np.zeros((16, self.n))
        self.interpolation = np.zeros((8, self.n))
コード例 #2
0
ファイル: rk.py プロジェクト: spraharsh/pele
 def __init__(self,
              fun,
              get_energy_gradient,
              t0,
              y0,
              t_bound,
              max_step=np.inf,
              rtol=1e-3,
              atol=1e-6,
              ls_ctol=1e-4,
              ls_max_iter=10,
              ls_dec_scale=0.5,
              vectorized=False,
              line_search_class=None,
              **extraneous):
     warn_extraneous(extraneous)
     super(RungeKutta_LS, self).__init__(fun,
                                         t0,
                                         y0,
                                         t_bound,
                                         vectorized,
                                         support_complex=True)
     self.y_old = None
     self.max_step = validate_max_step(max_step)
     self.rtol, self.atol = validate_tol(rtol, atol, self.n)
     self.f = self.fun(self.t, self.y)
     self.h_abs = select_initial_step(self.fun, self.t, self.y, self.f,
                                      self.direction, self.order, self.rtol,
                                      self.atol)
     self.K = np.empty((self.n_stages + 1, self.n), dtype=self.y.dtype)
     self.ls_ctol = ls_ctol
     self.ls_max_iter = ls_max_iter
     self.ls_dec_scale = ls_dec_scale
     self.get_energy_gradient = get_energy_gradient
     self.line_search_class = line_search_class
コード例 #3
0
 def __init__(self, *args, **kwargs):
     self.options = VariableStepOptions(
         **{k: kwargs.pop(k)
            for k in variable_step_options if k in kwargs})
     h = kwargs.pop("first_step", None)
     super().__init__(*args, **kwargs)
     validate_max_step(self.options.max_step)
     validate_tol(self.options.rtol, self.options.atol, self.y.size)
     if h is None:
         h = select_initial_step(
             self.rhs,
             self.t,
             self.y,
             self.f,
             1,
             self.error_estimator_order,
             self.options.rtol,
             self.options.atol,
         )
     self.h = np.array(h, dtype=float)
コード例 #4
0
    def __init__(self,
                 fun,
                 t0,
                 y0,
                 t_bound,
                 max_step=np.inf,
                 rtol=1e-7,
                 atol=1e-12,
                 safety_factor=0.9,
                 min_step_change=0.333,
                 max_step_change=6.0,
                 beta_stabilizer=0.00,
                 max_nsteps=100000,
                 vectorized=False,
                 **extraneous):
        warn_extraneous(extraneous)
        super().__init__(fun,
                         t0,
                         y0,
                         t_bound,
                         vectorized,
                         support_complex=True)
        self.y_old = None
        self.max_step = validate_max_step(max_step)
        self.beta_stabilizer = validate_beta_stabilizer(beta_stabilizer)
        self.max_nsteps = validate_max_nsteps(max_nsteps)
        self.safety_factor = validate_safety_factor(safety_factor)
        self.rtol, self.atol = validate_tol(rtol, atol, self.n)
        self.min_step_change = min_step_change
        self.max_step_change = max_step_change
        self.order = 8

        self.f = self.fun(self.t, self.y)
        self.h_abs = select_initial_step(
            self.fun,
            self.t,
            self.y,
            self.f,
            self.direction,
            self.order,
            self.rtol,
            self.atol,
        )
        self.nfev += 2

        self.n_steps = 0
        self.n_accepted = 0
        self.n_rejected = 0
        self.factor_old = 1e-4  # Lund-stabilization factor
        self.K = np.zeros((16, self.n))
        self.interpolation = np.zeros((8, self.n))
コード例 #5
0
ファイル: tools.py プロジェクト: rodjul42/pyC14
 def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
              rtol=1e-3, atol=1e-6, min_step=0, vectorized=False,
              first_step=None, **extraneous):
     warn_extraneous(extraneous)
     super(RungeKutta, self).__init__(fun, t0, y0, t_bound, vectorized,
                                      support_complex=True)
     self.min_step_user = min_step
     self.y_old = None
     self.max_step = validate_max_step(max_step)
     self.rtol, self.atol = validate_tol(rtol, atol, self.n)
     self.f = self.fun(self.t, self.y)
     if first_step is None:
         self.h_abs = select_initial_step(
             self.fun, self.t, self.y, self.f, self.direction,
             self.order, self.rtol, self.atol)
     else:
         self.h_abs = validate_first_step(first_step, t0, t_bound)
     self.K = np.empty((self.n_stages + 1, self.n), dtype=self.y.dtype)
コード例 #6
0
    def __init__(self,
                 fun,
                 t0,
                 y0,
                 t_bound,
                 max_step=np.inf,
                 rtol=1e-3,
                 atol=1e-6,
                 jac=None,
                 jac_sparsity=None,
                 vectorized=False,
                 first_step=None,
                 mass=None,
                 bPrint=False,
                 newton_tol=None,
                 constant_dt=False,
                 bPrintProgress=False,
                 **extraneous):
        warn_extraneous(extraneous)
        super(RadauDAE, self).__init__(fun, t0, y0, t_bound, vectorized)
        self.y_old = None
        self.max_step = validate_max_step(max_step)
        self.rtol, self.atol = validate_tol(rtol, atol, self.n)
        self.f = self.fun(self.t, self.y)
        # Select initial step assuming the same order which is used to control
        # the error.
        if first_step is None:
            self.h_abs = select_initial_step(self.fun, self.t, self.y, self.f,
                                             self.direction, 3, self.rtol,
                                             self.atol)
        else:
            self.h_abs = validate_first_step(first_step, t0, t_bound)
        self.h_abs_old = None
        self.error_norm_old = None

        if newton_tol is None:
            self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol**0.5))
        else:
            self.newton_tol = newton_tol
        self.sol = None
        self.constant_dt = constant_dt

        self.jac_factor = None
        self.jac, self.J = self._validate_jac(jac, jac_sparsity)

        self.nlusove = 0

        self.bPrintProgress = bPrintProgress
        global BPRINT
        BPRINT = bPrint
        if BPRINT:
            zzzjac = self.jac

            def debugJacprint(t, y, f):
                print('\tupdating jacobian')
                return zzzjac(t, y, f)

            self.jac = debugJacprint

        if issparse(self.J):

            def lu(A):
                self.nlu += 1
                return splu(A)

            def solve_lu(LU, b):
                self.nlusove += 1
                return LU.solve(b)

            I = eye(self.n, format='csc')
        else:

            def lu(A):
                self.nlu += 1
                return lu_factor(A, overwrite_a=True)

            def solve_lu(LU, b):
                self.nlusove += 1
                return lu_solve(LU, b, overwrite_b=True)

            I = np.identity(self.n)

        self.lu = lu
        self.solve_lu = solve_lu
        self.I = I

        if not (mass is None):
            if issparse(mass):
                self.mass_matrix = csc_matrix(mass)
                self.index_algebraic_vars = np.where(
                    np.all(self.mass_matrix.toarray() == 0,
                           axis=1))[0]  # TODO: avoid the toarray()
            else:
                self.mass_matrix = mass
                self.index_algebraic_vars = np.where(
                    np.all(self.mass_matrix == 0, axis=1))[0]
            self.nvars_algebraic = self.index_algebraic_vars.size
        else:
            self.mass_matrix = None
            self.index_algebraic_vars = None
            self.nvars_algebraic = 0

        self.current_jac = True
        self.LU_real = None
        self.LU_complex = None
        self.Z = None

        self.info = {
            'cond': {
                'LU_real': [],
                'LU_complex': [],
                't': [],
                'h': []
            }
        }