コード例 #1
0
    def test_tripoints_input_rescale(self):
        # Test at single points
        x = np.array([(0, 0), (-5, -5), (-5, 5), (5, 5), (2.5, 3)],
                     dtype=np.double)
        y = np.arange(x.shape[0], dtype=np.double)
        y = y - 3j * y

        tri = qhull.Delaunay(x)
        yi = interpnd.LinearNDInterpolator(tri.points, y)(x)
        yi_rescale = interpnd.LinearNDInterpolator(tri.points, y,
                                                   rescale=True)(x)
        assert_almost_equal(yi, yi_rescale)
コード例 #2
0
    def test_smoketest_rescale(self):
        # Test at single points
        x = np.array([(0, 0), (-5, -5), (-5, 5), (5, 5), (2.5, 3)],
                     dtype=np.double)
        y = np.arange(x.shape[0], dtype=np.double)

        yi = interpnd.LinearNDInterpolator(x, y, rescale=True)(x)
        assert_almost_equal(y, yi)
コード例 #3
0
ファイル: test_interpnd.py プロジェクト: Ombarus/python_env
    def test_smoketest_alternate(self):
        # Test at single points, alternate calling convention
        x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
                     dtype=np.double)
        y = np.arange(x.shape[0], dtype=np.double)

        yi = interpnd.LinearNDInterpolator((x[:,0], x[:,1]), y)(x[:,0], x[:,1])
        assert_almost_equal(y, yi)
コード例 #4
0
ファイル: test_interpnd.py プロジェクト: Ombarus/python_env
    def test_smoketest(self):
        # Test at single points
        x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
                     dtype=np.double)
        y = np.arange(x.shape[0], dtype=np.double)

        yi = interpnd.LinearNDInterpolator(x, y)(x)
        assert_almost_equal(y, yi)
コード例 #5
0
ファイル: test_interpnd.py プロジェクト: Ombarus/python_env
    def test_square_rescale(self):
        # Test barycentric interpolation on a rectangle with rescaling
        # agaings the same implementation without rescaling

        points = np.array([(0,0), (0,100), (10,100), (10,0)], dtype=np.double)
        values = np.array([1., 2., -3., 5.], dtype=np.double)

        xx, yy = np.broadcast_arrays(np.linspace(0, 10, 14)[:,None],
                                     np.linspace(0, 100, 14)[None,:])
        xx = xx.ravel()
        yy = yy.ravel()
        xi = np.array([xx, yy]).T.copy()
        zi = interpnd.LinearNDInterpolator(points, values)(xi)
        zi_rescaled = interpnd.LinearNDInterpolator(points, values,
                rescale=True)(xi)

        assert_almost_equal(zi, zi_rescaled)
コード例 #6
0
    def test_pickle(self):
        # Test at single points
        np.random.seed(1234)
        x = np.random.rand(30, 2)
        y = np.random.rand(30) + 1j * np.random.rand(30)

        ip = interpnd.LinearNDInterpolator(x, y)
        ip2 = pickle.loads(pickle.dumps(ip))

        assert_almost_equal(ip(0.5, 0.5), ip2(0.5, 0.5))
コード例 #7
0
ファイル: test_interpnd.py プロジェクト: Ombarus/python_env
    def test_tri_input(self):
        # Test at single points
        x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
                     dtype=np.double)
        y = np.arange(x.shape[0], dtype=np.double)
        y = y - 3j*y

        tri = qhull.Delaunay(x)
        yi = interpnd.LinearNDInterpolator(tri, y)(x)
        assert_almost_equal(y, yi)
コード例 #8
0
    def test_tri_input_rescale(self):
        # Test at single points
        x = np.array([(0, 0), (-5, -5), (-5, 5), (5, 5), (2.5, 3)],
                     dtype=np.double)
        y = np.arange(x.shape[0], dtype=np.double)
        y = y - 3j * y

        tri = qhull.Delaunay(x)
        match = ("Rescaling is not supported when passing a "
                 "Delaunay triangulation as ``points``.")
        with pytest.raises(ValueError, match=match):
            interpnd.LinearNDInterpolator(tri, y, rescale=True)(x)
コード例 #9
0
    def test_tri_input_rescale(self):
        # Test at single points
        x = np.array([(0, 0), (-5, -5), (-5, 5), (5, 5), (2.5, 3)],
                     dtype=np.double)
        y = np.arange(x.shape[0], dtype=np.double)
        y = y - 3j * y

        tri = qhull.Delaunay(x)
        try:
            interpnd.LinearNDInterpolator(tri, y, rescale=True)(x)
        except ValueError as e:
            if str(e) != ("Rescaling is not supported when passing a "
                          "Delaunay triangulation as ``points``."):
                raise
        except:
            raise
コード例 #10
0
ファイル: test_interpnd.py プロジェクト: Ombarus/python_env
    def test_square(self):
        # Test barycentric interpolation on a square against a manual
        # implementation

        points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
        values = np.array([1., 2., -3., 5.], dtype=np.double)

        # NB: assume triangles (0, 1, 3) and (1, 2, 3)
        #
        #  1----2
        #  | \  |
        #  |  \ |
        #  0----3

        def ip(x, y):
            t1 = (x + y <= 1)
            t2 = ~t1

            x1 = x[t1]
            y1 = y[t1]

            x2 = x[t2]
            y2 = y[t2]

            z = 0*x

            z[t1] = (values[0]*(1 - x1 - y1)
                     + values[1]*y1
                     + values[3]*x1)

            z[t2] = (values[2]*(x2 + y2 - 1)
                     + values[1]*(1 - x2)
                     + values[3]*(1 - y2))
            return z

        xx, yy = np.broadcast_arrays(np.linspace(0, 1, 14)[:,None],
                                     np.linspace(0, 1, 14)[None,:])
        xx = xx.ravel()
        yy = yy.ravel()

        xi = np.array([xx, yy]).T.copy()
        zi = interpnd.LinearNDInterpolator(points, values)(xi)

        assert_almost_equal(zi, ip(xx, yy))
コード例 #11
0
ファイル: BZ.py プロジェクト: OMalenfantThuot/bigdft-suite
 def __init__(self,astruct,mesh,evals,fermi_energy):
     import spglib,numpy
     cell=astruct_to_cell(astruct)
     self.lattice=cell[0]
     #celltmp=[ a if a!=float('inf') else 1.0 for a in astruct['cell']]
     #self.lattice=numpy.diag(celltmp)
     #print 'lattice',self.lattice
     #pos=[ [ a/b if b!=float('inf') else 0.0 for a,b in zip(at.values()[0], celltmp)]for at in astruct['positions']]
     #atoms=[ at.keys()[0] for at in astruct['positions']]
     #ianames,iatype=numpy.unique(atoms,return_inverse=True) #[1,]*4+[2,]*4 #we should write a function for the iatype
     #print 'iatype', iatype
     #cell=(self.lattice,pos,iatype)
     safe_print('spacegroup',spglib.get_spacegroup(cell, symprec=1e-5))
     #then define the pathes and special points
     import ase.dft.kpoints as ase
     #we should adapt the 'cubic'
     cell_tmp=astruct['cell']
     #print 'cell',cell_tmp,numpy.allclose(cell_tmp,[cell_tmp[0],]*len(cell_tmp))
     if numpy.allclose(cell_tmp,[cell_tmp[0],]*len(cell_tmp)):
         lattice_string='cubic'
     else:
         lattice_string='orthorhombic'
     safe_print('Lattice found:',lattice_string)
     self.special_points=ase.get_special_points(lattice_string, self.lattice, eps=0.0001)
     self.special_paths=ase.parse_path_string(ase.special_paths[lattice_string])
     self.fermi_energy=fermi_energy
     #dataset = spglib.get_symmetry_dataset(cell, symprec=1e-3)
     #print dataset
     #the shift has also to be put if present
     mapping, grid = spglib.get_ir_reciprocal_mesh(mesh, cell, is_shift=[0, 0, 0])
     lookup=[]
     for ikpt in numpy.unique(mapping):
         ltmp=[]
         for ind, (m, g) in enumerate(zip(mapping, grid)):
             if m==ikpt:
                 ltmp.append((g,ind))
         lookup.append(ltmp)
     safe_print('irreductible k-points',len(lookup))
     #print 'mapping',mapping
     #print 'grid',len(grid),numpy.max(grid)
     coords=numpy.array(grid, dtype = numpy.float)/mesh
     #print 'coords',coords
     #print 'shape',coords.shape
     #print grid #[ x+mesh[0]*y+mesh[0]*mesh[1]*z for x,y,z in grid]
     #brillouin zone
     kp=numpy.array([ k.kpt for k in evals])
     ourkpt=numpy.rint(kp*(numpy.array(mesh))).astype(int)
     #print ourkpt
     bz=numpy.ndarray((coords.shape[0],evals[0].size),dtype=float)
     #print bz
     shift=(numpy.array(mesh)-1)/2
     #print 'shift',shift
     for ik in lookup:
         irrk=None
         for orbs,bzk in zip(evals,ourkpt):
             for (kt,ind) in ik:
                 if (bzk==kt).all():
                     irrk=orbs
                     #print 'hello',orbs.kpt,kt
                     break 
             if irrk is not None: break
         if irrk is None:
             safe_print( 'error in ik',ik)
             safe_print( 'our',ourkpt)
             safe_print( 'spglib',grid)
             safe_print( 'mapping',mapping)
         for (kt,ind) in ik:
             #r=kt+shift
             #ind=numpy.argwhere([(g==kt).all() for g in grid])
             #print 'ik',kt,r,ind
             #print irrk.shape, bz.shape
             #bz[r[0],r[1],r[2],:]=irrk.reshape(irrk.size)
             bz[ind,:]=irrk.reshape(irrk.size)
     #duplicate coordinates for the interpolation
     bztmp=bz#.reshape((mesh[0]*mesh[1]*mesh[2], -1))
     #print bztmp
     ndup=7
     duplicates=[[-1,0,0],[1,0,0],[0,-1,0],[0,1,0],[0,0,-1],[0,0,1]]
     bztot=numpy.ndarray((ndup,bztmp.shape[0],bztmp.shape[1]))
     bztot[0,:,:]=bztmp
     ctot=numpy.ndarray((ndup,coords.shape[0],coords.shape[1]))
     ctot[0,:,:]=coords
     for i,sh in enumerate(duplicates):
         bztot[i+1,:,:]=bztmp
         ctot[i+1,:,:]=coords+sh
         #print 'coors',coords,coords+[1.0,0,0]
     bztot=bztot.reshape((ndup*bztmp.shape[0], -1))
     ctot=ctot.reshape((ndup*coords.shape[0], -1))
     import scipy.interpolate.interpnd as interpnd
     self.interpolator=interpnd.LinearNDInterpolator(ctot,bztot)
     #sanity check of the interpolation
     sanity=0.0
     for kpt in evals:
         diff=numpy.ravel(numpy.ravel(kpt)-numpy.ravel(self.interpolator([ kpt.kpt])))
         sanity=max(sanity,numpy.dot(diff,diff))
     print('Interpolation bias',sanity)