コード例 #1
0
ファイル: abstract_als.py プロジェクト: yobobski/CRIkit2
    def calculate(self, signal):
        self.full_sig_shape = signal.shape  # Shape of input signal
        self.full_sig_spectral_size = signal.shape[
            -1]  # Length of spectral axis

        if self.rng is None:
            self.rng = _np.arange(self.full_sig_spectral_size)

        self.rng_sig_shape = signal[..., self.rng].shape
        self.rng_sig_spectral_size = self.rng_sig_shape[-1]

        # N signals to detrend
        self.n_sig_to_detrend = int(signal.size / self.full_sig_spectral_size)

        tmr = _timeit.default_timer()
        if self.redux == 1:
            self.redux_sig_shape = self.rng_sig_shape
            self.redux_sig_spectral_size = self.redux_sig_shape[-1]

            output = _np.zeros(self.full_sig_shape, dtype=signal.dtype)
            output[..., self.rng] = self._calc(signal[..., self.rng])

        else:  # Sub-sample
            # Dummy indep variable
            x = _np.arange(self.rng.size)
            x_sub = _np.linspace(
                x[0], x[-1],
                _np.round(x.size / self.redux).astype(_np.integer))
            self.redux_sig_shape = list(self.full_sig_shape)
            self.redux_sig_shape[-1] = x_sub.size
            self.redux_sig_spectral_size = self.redux_sig_shape[-1]

            signal_sampled = _np.zeros(self.redux_sig_shape)

            # Spline interpolation/sub-sampling
            for coords in _np.ndindex(signal.shape[:-1]):
                spl = _USpline(x, signal[coords][self.rng], s=0)
                signal_sampled[coords] = spl(x_sub)

            # Baseline from sub-sampled signal
            output_sampled = self._calc(signal_sampled)

            output = _np.zeros(signal.shape)
            # Spline interpolation/super-sampling
            for coords in _np.ndindex(output_sampled.shape[0:-1]):
                spl2 = _USpline(x_sub, output_sampled[coords], s=0)
                output[[*coords, self.rng]] = spl2(x)

        tmr -= _timeit.default_timer()
        self.t = -tmr
        self.t_per_iter = self.t / self.n_sig_to_detrend

        return output
コード例 #2
0
ファイル: abstract_als.py プロジェクト: CCampJr/crikit2
    def calculate(self, signal):
        self.full_sig_shape = signal.shape # Shape of input signal
        self.full_sig_spectral_size = signal.shape[-1]  # Length of spectral axis

        if self.rng is None:
            self.rng = _np.arange(self.full_sig_spectral_size)
        
        self.rng_sig_shape = signal[..., self.rng].shape
        self.rng_sig_spectral_size = self.rng_sig_shape[-1]

        # N signals to detrend
        self.n_sig_to_detrend = int(signal.size/self.full_sig_spectral_size)
        
        tmr = _timeit.default_timer()
        if self.redux == 1:
            self.redux_sig_shape = self.rng_sig_shape
            self.redux_sig_spectral_size = self.redux_sig_shape[-1]

            output = _np.zeros(self.full_sig_shape, dtype=signal.dtype)
            output[..., self.rng] = self._calc(signal[..., self.rng])

        else:  # Sub-sample
            # Dummy indep variable
            x = _np.arange(self.rng.size)
            x_sub = _np.linspace(x[0], x[-1], _np.round(x.size / 
                                 self.redux).astype(_np.integer))
            self.redux_sig_shape = list(self.full_sig_shape)
            self.redux_sig_shape[-1] = x_sub.size
            self.redux_sig_spectral_size = self.redux_sig_shape[-1]

            signal_sampled = _np.zeros(self.redux_sig_shape)
            
            # Spline interpolation/sub-sampling
            for coords in _np.ndindex(signal.shape[:-1]):
                spl = _USpline(x,signal[coords][self.rng],s=0)
                signal_sampled[coords] = spl(x_sub)
            
            # Baseline from sub-sampled signal
            output_sampled = self._calc(signal_sampled)
            
            output = _np.zeros(signal.shape)
            # Spline interpolation/super-sampling
            for coords in _np.ndindex(output_sampled.shape[0:-1]):
                spl2 = _USpline(x_sub,output_sampled[coords],s=0)
                output[[*coords, self.rng]] = spl2(x)
            
        tmr -= _timeit.default_timer()
        self.t = -tmr
        self.t_per_iter = self.t/self.n_sig_to_detrend
        
        return output
コード例 #3
0
ファイル: als.py プロジェクト: CCampJr/crikit2
 def asym_param(self):
     if _np.size(self._asym_param) == 1:
         return self._asym_param
     elif self.redux == 1:
         return self._asym_param[self.rng]
     elif self.redux > 1:
         x = _np.arange(self.rng.size)
         x_sub = _np.linspace(x[0], x[-1], _np.round(x.size / 
                     self.redux).astype(_np.integer))
         spl = _USpline(x,self._asym_param[self.rng],s=0)
         return spl(x_sub)
コード例 #4
0
 def asym_param(self):
     if _np.size(self._asym_param) == 1:
         return self._asym_param
     elif self.redux == 1:
         return self._asym_param[self.rng]
     elif self.redux > 1:
         x = _np.arange(self.rng.size)
         x_sub = _np.linspace(
             x[0], x[-1],
             _np.round(x.size / self.redux).astype(_np.integer))
         spl = _USpline(x, self._asym_param[self.rng], s=0)
         return spl(x_sub)
コード例 #5
0
def als_baseline_redux(signal_input, redux_factor=10, redux_full=True,
                       smoothness_param=1, asym_param=1e-2,
                       cholesky_type=_cholesky_type,print_iteration=True):
    """
    Compute the baseline_current of signal_input using an asymmetric least squares
    algorithm designed by P. H. C. Eilers. This method is actually a
    wrapper to the particular implementations.

    NOTE: This method is the exact same as als_baseline EXCEPT it has a \
    performance enhancement by using interpolation to reduce the size of \
    signal_input.

    Parameters
    ----------
    signal_input : ndarray (1D)

    redux_factor : int
        Redeuction in size of signal_input via interpolation. Returned value \
        is re-interpolated

    redux_full : bool (default, True)
        Perform size-reduction using interpolation. This minimizes right-side \
        edge-effects. If false, the size reduction is from sub-sampling \
        i.e., signal_sub = signal[0::redux_factor]

    smoothness_param : float, optional (default, 1e3)
        Smoothness parameter

    asym_param : float, optional (default, 1e-4)
        Assymetry parameter

    cholesky_type : string, optional (default _cholesky_type)
        Algoirthmic type of Cholesky factorization to use. The
        default behavior is the method determined upon loading of this
        (sub-)module. The order of precedence is
            1. cvxopt.cholmod (sparse, uses CHOLMOD API)
            2. scitkits.sparse (sparse, uses LAPACK/ATLAS API)
            3. scipy.linalg (dense)

    Returns
    -------
    out : [ndarray, string]
        Baseline vector

    Notes
    -----
    The optimal implementation of Cholesky factorization for your
    particular application may not be that selected by the order-of-
    presedence. CHOLMOD was selected as the top presendence method
    as it has the least computational penalty due to particular
    array length. For certain array lengths, however, LAPACK/ATLAS is
    faster. You can set the particular method via the optional input
    argument 'cholesky_type'.

    This is the first attempt at converting MATLAB (Mathworks, Inc)
    scripts into Python code; thus, there will be bugs, the efficiency
    will be low(-ish), and I appreciate any useful suggestions or
    bug-finds.

    References
    ----------
    [1] P. H. C. Eilers, "A perfect smoother," Anal. Chem. 75,
        3631-3636 (2003).

    [2] P. H. C. Eilers and H. F. M. Boelens, "Baseline correction with
        asymmetric least squares smoothing," Report. October 21, 2005.

    [3] C. H. Camp Jr, Y. J. Lee, and M. T. Cicerone, "Quantitative,
        Comparable Coherent Anti-Stokes Raman Scattering (CARS)
        Spectroscopy: Correcting Errors in Phase Retrieval"

    """

    signal_shape_orig = signal_input.shape
    signal_ndim = _np.ndim(signal_input)

    x = _np.arange(0, signal_shape_orig[-1], 1)  # dummy indep variable

    # Sub-sample via interpolation or simple slicing
    if redux_full is True and redux_factor != 1:
        # Sub-sampled x
        x_sub = _np.linspace(x[0], x[-1],
                             _np.round(x.size/redux_factor).astype(int))
    elif redux_full is False and redux_factor != 1:
        x_sub = x[::redux_factor]
    else:  # Do not reduce
        baseline, _ = als_baseline(signal_input,
                                   smoothness_param=smoothness_param,
                                   asym_param=asym_param,
                                   print_iteration=print_iteration)
        return [baseline, cholesky_type]

    if signal_ndim == 1:
        spl = _USpline(x, signal_input, s=0)
        sampled_signal = spl(x_sub)
        sub_baseline, _ = als_baseline(sampled_signal,
                                       smoothness_param=smoothness_param,
                                       asym_param=asym_param,
                                       print_iteration=print_iteration)
        spl2 = _USpline(x_sub, sub_baseline, s=0)
        baseline = spl2(x)
    elif signal_ndim == 2:
        sampled_signal = _np.zeros((signal_shape_orig[0],x_sub.size))
        baseline = _np.zeros(signal_shape_orig)
        for num, sp in enumerate(signal_input):
            spl = _USpline(x,sp,s=0)
            sampled_signal[num,:] = spl(x_sub)

        sub_baseline,_ = als_baseline(sampled_signal,
                                      smoothness_param=smoothness_param,
                                      asym_param=asym_param,
                                      print_iteration=print_iteration)

        for num, sp in enumerate(sub_baseline):
            spl2 = _USpline(x_sub,sp,s=0)
            baseline[num,:] = spl2(x)


    elif signal_ndim == 3:
        sampled_signal = _np.zeros((signal_shape_orig[0],signal_shape_orig[1], x_sub.size))
        baseline = _np.zeros(signal_shape_orig)
        for row_num, blk in enumerate(signal_input):
            for col_num, sp in enumerate(blk):
                spl = _USpline(x,sp,s=0)
                sampled_signal[row_num, col_num,:] = spl(x_sub)
        sub_baseline,_ = als_baseline(sampled_signal,
                                      smoothness_param=smoothness_param,
                                      asym_param=asym_param,
                                      print_iteration=print_iteration)
        for row_num, blk in enumerate(sub_baseline):
            for col_num, sp in enumerate(blk):
                spl2 = _USpline(x_sub,sp,s=0)
                baseline[row_num, col_num,:] = spl2(x)



    return [baseline, cholesky_type]