def read_geo_file(s, geo_filename): from scipy.io.numpyio import fread print 'Reading the line-array from the %s.line.geo...' % geo_filename fd = open(geo_filename + '.line.geo', 'rb') data_line_array = fread(fd, 3*(s.Nx+1)*(s.Ny+1)*(s.Nz+1), 'f') data_line_array = data_line_array.reshape(3, s.Nx+1, s.Ny+1, s.Nz+1) s.line_x = data_line_array[0] s.line_y = data_line_array[1] s.line_z = data_line_array[2] fd.close() print 'Reading the area-array from the %s.area.geo...' % geo_filename fd = open(geo_filename + '.area.geo', 'rb') data_area_array = fread(fd, 3*(s.Nx+2)*(s.Ny+2)*(s.Nz+2), 'f') data_area_array = data_area_array.reshape(3, s.Nx+2, s.Ny+2, s.Nz+2) s.area_x = data_area_array[0] s.area_y = data_area_array[1] s.area_z = data_area_array[2] fd.close() s.arr = {'x':(s.line_x,s.area_x), 'y':(s.line_y,s.area_y), 'z':(s.line_z,s.area_z)} s.geo_dirname = '%s.gview' % geo_filename import os try: os.mkdir(s.geo_dirname) except: print 'Remove the exist dir \'%s\'' %s.geo_dirname cmd = 'rm -rf %s' %s.geo_dirname os.system(cmd) os.mkdir(s.geo_dirname) print 'Create the png dir \'%s\'' %s.geo_dirname
def __init__(self,dir): """Constructor @param dir -- path of MNIST dataset """ fd = open(dir+'/train-labels.idx1-ubyte') fread(fd,8,'c') self.data_labels = np.fromfile(file=fd, dtype=np.uint8).reshape((60000,1)) fd.close() fd = open(dir+'/train-images.idx3-ubyte') fread(fd,16,'c') self.data = np.fromfile(file=fd, dtype=np.uint8).reshape((60000,784)) fd.close() fd = open(dir+'/t10k-images.idx3-ubyte') fread(fd,16,'c') self.test = np.fromfile(file=fd, dtype=np.uint8).reshape((10000,784)) fd.close() fd = open(dir+'/t10k-labels.idx1-ubyte') fread(fd,8,'c') self.test_labels = np.fromfile(file=fd, dtype=np.uint8).reshape((10000,1)) fd.close()
def __init__(self, dir): """Constructor @param dir -- path of MNIST dataset """ fd = open(dir + '/train-labels.idx1-ubyte') fread(fd, 8, 'c') self.data_labels = np.fromfile(file=fd, dtype=np.uint8).reshape( (60000, 1)) fd.close() fd = open(dir + '/train-images.idx3-ubyte') fread(fd, 16, 'c') self.data = np.fromfile(file=fd, dtype=np.uint8).reshape((60000, 784)) fd.close() fd = open(dir + '/t10k-images.idx3-ubyte') fread(fd, 16, 'c') self.test = np.fromfile(file=fd, dtype=np.uint8).reshape((10000, 784)) fd.close() fd = open(dir + '/t10k-labels.idx1-ubyte') fread(fd, 8, 'c') self.test_labels = np.fromfile(file=fd, dtype=np.uint8).reshape( (10000, 1)) fd.close()
def read_scbin_2d(scbin_path, Nx, Ny): fd = open(scbin_path, 'rb') array = fread(fd, Nx*Ny, 'f') array = array.reshape(Nx, Ny) fd.close() return array
def read_geo_file(s, geo_filename): from scipy.io.numpyio import fread print 'Reading the line-array from the %s.line.geo...' % geo_filename fd = open(geo_filename + '.line.geo', 'rb') data_line_array = fread(fd, 3 * (s.Nx + 1) * (s.Ny + 1) * (s.Nz + 1), 'f') data_line_array = data_line_array.reshape(3, s.Nx + 1, s.Ny + 1, s.Nz + 1) s.line_x = data_line_array[0] s.line_y = data_line_array[1] s.line_z = data_line_array[2] fd.close() print 'Reading the area-array from the %s.area.geo...' % geo_filename fd = open(geo_filename + '.area.geo', 'rb') data_area_array = fread(fd, 3 * (s.Nx + 2) * (s.Ny + 2) * (s.Nz + 2), 'f') data_area_array = data_area_array.reshape(3, s.Nx + 2, s.Ny + 2, s.Nz + 2) s.area_x = data_area_array[0] s.area_y = data_area_array[1] s.area_z = data_area_array[2] fd.close() s.arr = { 'x': (s.line_x, s.area_x), 'y': (s.line_y, s.area_y), 'z': (s.line_z, s.area_z) } s.geo_dirname = '%s.gview' % geo_filename import os try: os.mkdir(s.geo_dirname) except: print 'Remove the exist dir \'%s\'' % s.geo_dirname cmd = 'rm -rf %s' % s.geo_dirname os.system(cmd) os.mkdir(s.geo_dirname) print 'Create the png dir \'%s\'' % s.geo_dirname
def bin2lut(descfname, **kwargs): """Load a raw binary file as lut directly. Parameters: descfname: a description txt file in the format below: # Comment lines starts with # binary_file : /path/to/binary_file dtype : datatype of the lut, a character in 'cb1silfdFD' dimname1 : 1 2 3 4 5 dimname2 : 10.0, 20.0, 30.0, 40.0 ... # dims can either be seperated with ',' or ' ' kwargs: mem_type: a character in 'cb1silfdFD' byteswap: 0 : no swap 1 : swap """ from scipy.io.numpyio import fread descf_folder_path = os.path.dirname(descfname) descf_basename = os.path.basename(descfname) descf = open(descfname) dims = [] shp = [] binary_file = '%s.bin' % descf_basename dtype = 'f' for l in descf: l = l.strip() if len(l) == 0 or l.startswith('#'): continue name, value = l.split(':', 1) name = name.strip() value = value.strip() if name == 'binary_file': binary_file = value elif name == 'dtype': dtype = value else: if ',' in value: sep = ',' else: sep = ' ' arrayvalue = np.fromstring(value, sep=sep, dtype='f4') dims.append((name, arrayvalue)) shp.append(arrayvalue.shape[0]) total_elements_num = np.multiply.reduce(shp) shp = tuple(shp) binary_file_abspath = os.path.join(descf_folder_path, binary_file) f = open(binary_file_abspath, 'rb') lut_arr = fread(f, total_elements_num, dtype).reshape(shp) f.close() lut = lookup_table(lut_arr, dims) return lut
def read_structure_files(): print 'Reading the structure files...' structures = [] s_number = 0 flist = glob.glob('./structures/*') for file in flist: if '_info' in file: print file structures.append( __import__(file) ) structure = structures[-1] Nx, Ny, Nz = structure.discrete_effective_region_sides filename = './structures/%.3d_%s_ispts_x.scbin' \ % (s_number, structure.__name__) print filename array_file = open(filename, 'rb') ISPTs_array_x = fread(filename, 2*Ny*Nz, 'f').reshape(2,Ny,Nz) array_file.close() filename = './structures/%.3d_%s_ispts_y.scbin' \ % (s_number, structure.__name__) print filename array_file = open(filename, 'rb') ISPTs_array_y = fread(filename, 2*Nx*Nz, 'f').reshape(2,Nx,Nz) array_file.close() filename = './structures/%.3d_%s_ispts_z.scbin' \ % (s_number, structure.__name__) print filename array_file = open(filename, 'rb') ISPTs_array_z = fread(filename, 2*Nx*Ny, 'f').reshape(2,Nx,Ny) array_file.close() structure.intersection_points_arrays = [ \ ISPTs_array_x, ISPTs_array_y, ISPTs_array_z] s_number += 1 return structures
def test_basic(self): # Generate some data a = 255*rand(20) # Open a file fname = tempfile.mktemp('.dat') fid = open(fname,"wb") # Write the data as shorts numpyio.fwrite(fid,20,a,N.Int16) fid.close() # Reopen the file and read in data fid = open(fname,"rb") if verbose >= 3: print "\nDon't worry about a warning regarding the number of bytes read." b = numpyio.fread(fid,1000000,N.Int16,N.Int) fid.close() assert(N.product(a.astype(N.Int16) == b,axis=0)) os.remove(fname)
def test_basic(self): # Generate some data a = 255 * rand(20) # Open a file fname = tempfile.mktemp('.dat') fid = open(fname, "wb") # Write the data as shorts numpyio.fwrite(fid, 20, a, N.Int16) fid.close() # Reopen the file and read in data fid = open(fname, "rb") if verbose >= 3: print "\nDon't worry about a warning regarding the number of bytes read." b = numpyio.fread(fid, 1000000, N.Int16, N.Int) fid.close() assert (N.product(a.astype(N.Int16) == b, axis=0)) os.remove(fname)
def petsc_binary_read(filename, spymatrix): fd = open(filename,'rb'); datatype = 'i' header = fread(fd, 2, datatype, datatype, 1) if np.size(header) <= 0: print 'File does not have that many items' sys.exit(1) if header[0] == 1211216: # read matrix m = header[1] header = fread(fd, 2, datatype, datatype, 1) n = header[0] nz = header[1] nnz = fread(fd, m, datatype, datatype, 1) j = fread(fd, nz, 'i', 'i', 1) + 1 # columns s = fread(fd, nz, 'd', 'd', 1) # data i = np.ones((nz)) # pointers cnt = 0 for k in xrange(m): next = cnt + nnz[k] - 1 i[cnt:next+1] = k * np.ones((nnz[k])) cnt = next + 1 # adjust to python-zero based indexing j = j - 1 A = sparse.coo_matrix( (s,(i,j)), (m,n) ) if spymatrix == 1: plt.spy(A,marker='.') plt.show() fd.close() return A elif header[0] == 1211214: # read vector m = header[1] datatype = 'd' v = fread(fd, m, datatype, datatype, 1) fd.close() return v
def fort_read(self,fmt,dtype=None): lookup_dict = {'ieee-le':"<",'ieee-be':">",'native':''} if dtype is None: fmt = lookup_dict[self.format] + fmt numbytes = struct.calcsize(fmt) nn = struct.calcsize("i"); self.fid.read(nn) data = struct.unpack(fmt,self.fid.read(numbytes)) self.fid.read(nn) return data else: # Ignore format string and read in next record as an array. fmt = lookup_dict[self.format] + "i" nn = struct.calcsize(fmt) nbytes = struct.unpack(fmt,self.fid.read(nn))[0] howmany, dtype = getsize_type(dtype) ncount = nbytes / howmany if ncount*howmany != nbytes: self.rewind(4) raise ValueError, "A mismatch between the type requested and the data stored." retval = numpyio.fread(self.fid, ncount, dtype, dtype, self.bs) if len(retval) == 1: retval = retval[0] self.fid.read(nn) return retval
def read_head_MODFLOW(infile,nlay,nrow,ncol,ss,nan_flag): ifp = open(infile,'rb') # holders for the data reading in kstp = [] kper = [] pertim = [] totim = [] heads = [] newTime = True i=-1 while 1: kstp_tmp = fread(ifp,1,'i') if not kstp_tmp: break else: kstp.append(kstp_tmp[0]) if newTime == True: heads.append(hds(nlay,nrow,ncol,kstp[-1])) newTime = False i +=1 kper.append(fread(ifp,1,'i')[0]) pertim.append(fread(ifp,1,'f')[0]) totim.append(fread(ifp,1,'f')[0]) junkus = fread(ifp,16,'c') pos = fread(ifp,3,'i') headin = fread(ifp,pos[0]*pos[1],'f').reshape(nrow,ncol) if nan_flag: headin[headin==999] = np.nan heads[i].heads[:,:,pos[2]-1]=headin if pos[2]==nlay: newTime = True # here we break out after only one pass if seeking only one # stress period (ss means steady-state). probably not really necessary.... if ss == True: break return kstp,kper,heads, pertim
import matplotlib.colors import sys from scipy.io.numpyio import fwrite, fread filename=sys.argv[1] #slide_number=int(sys.argv[2]) #print dir,slide_number #rcParams['font.colors']='w' fd=open(filename, 'rb') datatype = 'i' size = 2 shape=(2) size=fread(fd, size, datatype) nx=size[0] ny=size[1] data = zeros((nx,ny,3)) datatype='d' size=nx*ny*3 shape=(3,ny,nx) data=fread(fd, size, datatype) data=data.reshape(shape) print "Dimensions",nx,ny nx1=0 nx2=800 ny1=0
import numpy as np from scipy.io.numpyio import fwrite, fread import ipdb as pdb import os import sys sys.excepthook = __IPYTHON__.excepthook path = "/home/local/datasets/MNIST" with open(os.path.join(path, 't10k-images.idx3-ubyte')) as fd: #with open(os.path.join(path,'train-images.idx3-ubyte')) as fd: fread(fd, 16, 'c') #data = np.fromfile(file=fd, dtype=np.uint8).reshape( (60000,784) ) data = np.fromfile(file=fd, dtype=np.uint8).reshape((10000, 784)) padded_data = [] for image in data: padded_image = np.zeros((32, 32)) padded_image[2:30, 2:30] = image.reshape(28, 28) padded_data.append(padded_image.flatten()) #np.save(os.path.join(path,'mnist_padded'),np.array(padded_data).T.astype(np.uint8)) np.save(os.path.join(path, 'mnist_padded_test'), np.array(padded_data).T.astype(np.uint8))
def read_scbin_1d(scbin_path, Nx): fd = open(scbin_path, 'rb') array = fread(fd, Nx, 'f') fd.close() return array
# generate signal # sr = 48000.0 winlen = 2048 nfreqs = winlen//2+1 winstep = 64 nsamples = os.stat(sys.argv[1])[ST_SIZE] / 4 print nsamples, " samples" if len(sys.argv) == 4: nsamples = int(sys.argv[3]) fd = open(sys.argv[1], 'rb') signal = fread(fd, nsamples, 'f') print "signals is", type(signal), signal.shape starts = range(0, (len(signal)-winlen), winstep) results = n.zeros((len(starts), nfreqs)) # x_labels = n.array(starts)/sr # y_labels = n.array([(sr*x)/winlen for x in range(winlen/2)]) # print x_labels # print y_labels index = 0 for start_off in starts: if start_off % 1000 == 0: # print "****", start_off, "****"
def main(): NBND=16; NBND2=2*NBND dirout=sys.argv[1] NCELL=int(sys.argv[2]) NGPUX=int(sys.argv[3]) NGPUY=int(sys.argv[4]) NGPUZ=int(sys.argv[5]) ISNAP=int(sys.argv[6]) NGPUTOT=NGPUX*NGPUY*NGPUZ NX=NCELL/NGPUX NY=NCELL/NGPUY NZ=NCELL/NGPUZ x=np.zeros([NCELL,NCELL,NCELL]) t=np.zeros([NCELL,NCELL,NCELL]) for k in range(NGPUZ): for j in range(NGPUY): for i in range(NGPUX): idx=i+j*NGPUX+k*NGPUX*NGPUY fname=dirout+'/snap.%05d.p%05d'%(ISNAP,idx) print 'reading '+fname fbuf=open(fname,mode="rb") nc=fread(fbuf,1,'i') tt=fread(fbuf,1,'f') xtemp=fread(fbuf,(NX+NBND2)*(NY+NBND2)*(NZ+NBND2),'f') ttemp=fread(fbuf,(NX+NBND2)*(NY+NBND2)*(NZ+NBND2),'f') fbuf.close() xtemp=xtemp.reshape((NZ+NBND2,NY+NBND2,NX+NBND2)) ttemp=ttemp.reshape((NZ+NBND2,NY+NBND2,NX+NBND2)) x[k*NZ:(k+1)*NZ,j*NY:(j+1)*NY,i*NX:(i+1)*NX]=xtemp[NBND:NBND+NZ,NBND:NBND+NY,NBND:NBND+NX] t[k*NZ:(k+1)*NZ,j*NY:(j+1)*NY,i*NX:(i+1)*NX]=ttemp[NBND:NBND+NZ,NBND:NBND+NY,NBND:NBND+NX] xx=np.linspace(-6.6,6.6,NCELL) plt.title('time='+str(tt)) plt.subplot(221) plt.imshow(1.-x[NCELL/2,:,:]) plt.subplot(222) plt.plot(xx,1.-x[NCELL/2,NCELL/2,:]) plt.xlim(-6.6,6.6) plt.yscale('log') plt.subplot(223) plt.imshow(t[NCELL/2,:,:]) plt.subplot(224) plt.plot(xx,t[NCELL/2,NCELL/2,:]) plt.yscale('log') plt.xlim(-6.6,6.6) plt.ylim(5000.,3e4) plt.show()
# know the datatype of your array, its size and its shape. # # <codecell> >>> from scipy.io.numpyio import fwrite, fread >>> data = zeros((3,3)) >>>#write: fd = open('myfile.dat', 'wb') >>> fwrite(fd, data.size, data) >>> fd.close() >>>#read: >>> fd = open('myfile.dat', 'rb') >>> datatype = 'i' >>> size = 9 >>> shape = (3,3) >>> read_data = fread(fd, size, datatype) >>> read_data = data.reshape(shape) # <markdowncell> # Or, you can simply use and . Following the previous example: # # <codecell> >>> data.tofile('myfile.dat') >>> fd = open('myfile.dat', 'rb') >>> read_data = numpy.fromfile(file=fd, dtype=numpy.uint8).reshape(shape) # <markdowncell>
#!/usr/bin/python -Wignore from scipy.io.numpyio import fread, fwrite from pylab import * import sys # load data for slice in ( sys.argv[1:] ) : print slice input = open( slice, "r" ) (nx,nz) = fread( input, 2, 'i' ) density = fread( input, nx*nz, 'f' ).reshape(nz,nx) input.close() figure( figsize=(float(nz)/72,float(nx)/72), dpi=72 ) a = axes([0,0,1,1]) a.axis('off') a.imshow(density,cmap=cm.jet,origin="lower",interpolation="Nearest") a.set_autoscale_on(False) savefig(slice.replace("dat","png"),dpi=72) clf()
from pylab import * from numpy import ma import matplotlib.pyplot as plt import numpy as np import array import scipy #d:\Temp\POY\2\SP\node_0 rootdir ="f:/data/Bank/Constant Speed 001/RESULTS_MPI4-50ms/IM" outdir = rootdir maindir = rootdir + "/IMAGE.npz" N = 1 #number of nodes from scipy.io.numpyio import fwrite, fread #///////////////////////// Xsize = 13201 Zsize = 1921 vmodel = fread (open('f:/data/BP2004/modelq.bin','rb'),Xsize*Zsize,'f').reshape ((13201,1921)).transpose() partmod = vmodel[::1,0:2600:1] partmod = partmod - scipy.ndimage.filters.gaussian_filter(partmod,2) partmod = np.abs (np.clip (partmod*0.001,-1.,1.)) modrgba = np.zeros ((partmod.shape[0],partmod.shape[1],4),dtype = 'f') modrgba[:,:,0] = partmod modrgba[:,:,3] = 1. Image = np.load("%s"%maindir, mmap_mode='r')['arr_0.npy'] #SNorm = np.load("%s/s_norm.npz"%rootdir, mmap_mode='r')['arr_0.npy'] #sigma =3 #blurred = scipy.ndimage.filters.gaussian_filter(Image,sigma) # #filtered = Image - blurred
import numpy as np from scipy.io.numpyio import fwrite, fread import ipdb as pdb import os import sys sys.excepthook = __IPYTHON__.excepthook path="/home/local/datasets/MNIST" with open(os.path.join(path,'t10k-images.idx3-ubyte')) as fd: #with open(os.path.join(path,'train-images.idx3-ubyte')) as fd: fread(fd,16,'c') #data = np.fromfile(file=fd, dtype=np.uint8).reshape( (60000,784) ) data = np.fromfile(file=fd, dtype=np.uint8).reshape( (10000,784) ) padded_data=[] for image in data: padded_image=np.zeros((32,32)) padded_image[2:30,2:30]=image.reshape(28,28) padded_data.append(padded_image.flatten()) #np.save(os.path.join(path,'mnist_padded'),np.array(padded_data).T.astype(np.uint8)) np.save(os.path.join(path,'mnist_padded_test'),np.array(padded_data).T.astype(np.uint8))
def read_igb_slice (filename, is_gzipped=False): """ Reads IGB slice. If gzipped it uncompress and output a binary file that is used to read the data """ if is_gzipped: igbFile = gunzipFile(filename) else: igbFile = filename hd = read_igb_header(igbFile, is_gzipped=False) filestats = os.stat(igbFile) filesize = filestats[stat.ST_SIZE] if hd.systeme == 'big_endian' : byteswap=1 elif hd.systeme == 'little_endian': byteswap=0 # setup time slices to be read t_slices = xrange(1,hd.t+1) if size(t_slices) == 0: t_slices = 1 print " WARNING: Trying to read at least one time slice!" # how many time slices we are going to read ? n_slices = len(t_slices) # expected data size data_in_file = hd.x * hd.y * hd.z * hd.t ## FORCE MY CASE in case of MEMORY ERROR ## #n_slices = 1001 # data type if hd.type == 'float': dbytes = 4 dtype = 'f' data = zeros( (n_slices, hd.x, hd.y, hd.z), dtype=float32 ) elif hd.type == 'double': dbytes = 8 dtype = 'd' data = zeros( (n_slices, hd.x, hd.y, hd.z), dtype=float64 ) # open data fh = open(igbFile,'rb') # size of one time slice slice_size = hd.x * hd.y * hd.z # read data till end of file actual_timesteps = 0 for i in xrange(n_slices): # compute position of time slice i pos = (t_slices[i] - 1) * slice_size * dbytes + 1024 fh.seek(pos) slice_buf = fread(fh, slice_size, dtype, dtype, byteswap) count = size(slice_buf) if count == slice_size: data[i,:,:,:] = slice_buf.reshape(hd.x, hd.y, hd.z) actual_timesteps = actual_timesteps + 1 #else: # print " read_igb_slices: Incomplete time step %d of %d " % (i,n_slices) hd.t = actual_timesteps fh.close() # if gzipped, remove temporary uncompressed file if is_gzipped: os.remove(igbFile) return data, hd
import numpy as n from pylab import * # # generate signal # sr = 48000.0 datfile = 'signal.dat' nsamples = os.stat(datfile)[ST_SIZE] / 4 print "Reading %d samples from %s" % (nsamples, datfile) fd = open(datfile, 'rb') datatype = 'f' shape = (nsamples,) blob = fread(fd, nsamples, datatype) signal = blob.reshape(shape) # # autocorr routine # def autocorrelate(a): winlen = int(sr/70) freqs = n.zeros((len(a)-winlen,)) for outer in range(0, len(a)-(winlen*2)): corr_coeff = n.zeros((winlen,)) for inner in range(winlen):
def fread(self,count,mtype): howmany,mtype = getsize_type(mtype) retval = numpyio.fread(self.fid, count, mtype, mtype, self.bs) if len(retval) == 1: retval = retval[0] return retval
#!/usr/bin/python import numpy as n from scipy.io.numpyio import fread import os, sys from stat import * from pylab import * # # generate signal # sr = 48000.0 nsamples = os.stat(sys.argv[1])[ST_SIZE] / 4 fd = open(sys.argv[1], 'rb') blob = fread(fd, nsamples, 'f') shape = (nsamples,) signal = blob.reshape(shape) plot(signal) show()
# Check whether the file is binary or ascii # The chenking is implemented by counting the number of # lines is ascii mode. If it is equal to size, the file # is an ascii file. count=0 for line in open(fname+'.dat','r'): if (line.strip() != ''): count += 1 if (count == (size*veclen)): # Ascii file read_data=np.loadtxt(fname+'.dat') else: # Binary file fd=open(fname+'.dat','rb') read_data = fread(fd, size, 'd') fd.close() f_out=open(fname+'.vtk','w') f_out.write('# vtk DataFile Version 2.0\n') f_out.write(fname+'\n') f_out.write('ASCII\n') f_out.write('DATASET RECTILINEAR_GRID\n') if(ndim==3): f_out.write('DIMENSIONS %6d %6d %6d\n'%(dim1-16,dim2-16,dim3-25)) else: f_out.write('DIMENSIONS %6d %6d\n'%(dim1-16,dim2-16)) f_out.write('X_COORDINATES %8d float\n'%(dim1-16)) for i in range(8,dim1-8): f_out.write('%18.10f\n'%(coord_1[i])) f_out.write('Y_COORDINATES %8d float\n'%(dim2-16))
#!/usr/bin/env python from pylab import * from scipy.io.numpyio import fread Nx, Ny = 400, 350 fd = open('./dat/050-A_binary.dat', 'rb') A = fread( fd, Nx*Ny, 'f' ) A = A.reshape( Nx, Ny ) fd.close() fd = open('./dat/050-dA_binary.dat', 'rb') dA = fread( fd, Nx*Ny, 'f' ) dA = dA.reshape( Nx, Ny ) fd.close() figure( figsize=(15,5) ) subplot(1,2,1) imshow( A.T, cmap=cm.hot, origin='lower', interpolation='bilinear' ) title('2D Gaussian') xlabel('x-axis') ylabel('y-axis') colorbar() subplot(1,2,2) imshow( dA.T, cmap=cm.hot, origin='lower', interpolation='bilinear' ) title('differential') xlabel('x-axis') ylabel('y-axis') colorbar()
#!/usr/bin/python import sys import numpy as n from scipy.io.numpyio import fread import os, sys from stat import * from pylab import * import matplotlib.ticker as mt import matplotlib.mlab as mlab print "Opening %s" % sys.argv[1] fd = open(sys.argv[1], 'rb') title = sys.argv[2] shape = fread(fd, 2, 'f') shape = shape.astype(n.int32) print "shape=", shape, " going to read %d bytes", shape[0] * shape[1] blob = fread(fd, shape[0] * shape[1], 'f') print "Blob size is %d" % blob.size Z = blob.reshape(shape) imshow(Z.T) #, None)# , extent = (x_labels[0], x_labels[-1],y_labels[0], y_labels[-1])) gca().axis('tight') gca().set_title(title) show()