コード例 #1
0
ファイル: MapData.py プロジェクト: spudde123/SC2MapAnalysis
    def _calc_grid(self) -> None:
        # converting the placement grid to our own kind of grid
        # cleaning the grid and then searching for 2x2 patterned regions
        grid = binary_fill_holes(self.placement_arr).astype(int)
        # for our grid,  mineral walls are considered as a barrier between regions
        for point in self.resource_blockers:
            grid[int(point[1])][int(point[0])] = 0
            for n in point.neighbors4:
                point_ = Point2((n.rounded[0], n.rounded[1]))
                if point_[0] < grid.shape[1] and point_[1] < grid.shape[0]:
                    grid[int(point_[1])][int(point_[0])] = 0

        s = generate_binary_structure(BINARY_STRUCTURE, BINARY_STRUCTURE)
        labeled_array, num_features = ndlabel(grid, structure=s)

        # for some operations the array must have same numbers or rows and cols,  adding
        # zeros to fix that
        # rows, cols = labeled_array.shape
        # self.region_grid = np.append(labeled_array, np.zeros((abs(cols - rows), cols)), axis=0)
        self.region_grid = labeled_array.astype(int)
        self.regions_labels = np.unique(self.region_grid)
        vb_points = self._vision_blockers

        # some maps has no vision blockers
        if len(vb_points):
            vision_blockers_indices = self.points_to_indices(vb_points)
            vision_blockers_array = np.zeros(self.region_grid.shape,
                                             dtype="int")
            vision_blockers_array[vision_blockers_indices] = 1
            vb_labeled_array, vb_num_features = ndlabel(vision_blockers_array)
            self.vision_blockers_grid = vb_labeled_array
            self.vision_blockers_labels = np.unique(vb_labeled_array)
コード例 #2
0
def thresholdCenterlines(nms, tLow=0.012, tHigh=0.12, bimodal=True):
    """ Uses a continuity-preserving hysteresis thresholding to classify
    centerlines.
    
    Inputs:
    nms -- Non-maxima suppressed singularity index response

    Keyword Arguments:
    bimodal -- true if the areas of rivers in the image are sufficiently
               large that the distribution of ψ is bimodal
    tLow -- lower threshold (automatically set if bimodal=True)
    tHigh -- higher threshold (automatically set if bimodal=True)

    Returns:
    centerlines -- a binary matrix that indicates centerline locations
    """

    if bimodal:
        #Otsu's algorithm
        nms = preprocess.double2im(nms, 'uint8')
        tHigh,_ = cv2.threshold(nms, nms.min(), nms.max(), cv2.THRESH_OTSU)
        tLow = tHigh * 0.1

    strongCenterline    = nms >= tHigh
    centerlineCandidate = nms >= tLow

    # Find connected components that has at least one strong centerline pixel
    strel = np.ones((3, 3), dtype=bool)
    cclabels, numcc = ndlabel(centerlineCandidate, strel)
    sumstrong = ndsum(strongCenterline, cclabels, list(range(1, numcc+1)))
    centerlines = np.hstack((0, sumstrong > 0)).astype('bool')
    centerlines = centerlines[cclabels]

    return centerlines
コード例 #3
0
def get_largest_component(lab):
    """Get largest connected component.

    Given a multi-class labeling,
    leave the largest connected component
    for each class.
    """
    classes = np.unique(lab)
    classes = np.delete(classes, np.argwhere(classes == 0))
    pruned_lab = np.zeros(lab.shape, dtype=lab.dtype)
    for c in classes:
        print("Finding largest connected component in class {}".format(c))
        # make it black and white
        bw = np.zeros(lab.shape)
        bw[lab == c] = 1
        # 26 connectivity for 3D images
        conn = np.ones((3, 3, 3))
        # clustered_lab.shape = bw.shape
        clustered_lab, n_comps = ndlabel(bw, conn)
        # sort components by volume from smallest to largest (skip zero)
        comp_volumes = [np.sum(clustered_lab == i) for i in range(1, n_comps)]
        comp_labels = np.argsort(comp_volumes)
        # pick component with largest volume (not counting background)
        largest_comp_label = 1 + comp_labels[-1]

        # keep the component in the output
        pruned_lab[clustered_lab == largest_comp_label] = c
    return pruned_lab
コード例 #4
0
ファイル: delineate.py プロジェクト: isikdogan/rivamap
def thresholdCenterlines(nms, tLow=0.012, tHigh=0.12, bimodal=True):
    """ Uses a continuity-preserving hysteresis thresholding to classify
    centerlines.
    
    Inputs:
    nms -- Non-maxima suppressed singularity index response

    Keyword Arguments:
    bimodal -- true if the areas of rivers in the image are sufficiently
               large that the distribution of ψ is bimodal
    tLow -- lower threshold (automatically set if bimodal=True)
    tHigh -- higher threshold (automatically set if bimodal=True)

    Returns:
    centerlines -- a binary matrix that indicates centerline locations
    """

    if bimodal:
        #Otsu's algorithm
        nms = preprocess.double2im(nms, 'uint8')
        tHigh,_ = cv2.threshold(nms, nms.min(), nms.max(), cv2.THRESH_OTSU)
        tLow = tHigh * 0.1

    strongCenterline    = nms >= tHigh
    centerlineCandidate = nms >= tLow

    # Find connected components that has at least one strong centerline pixel
    strel = np.ones((3, 3), dtype=bool)
    cclabels, numcc = ndlabel(centerlineCandidate, strel)
    sumstrong = ndsum(strongCenterline, cclabels, range(1, numcc+1))
    centerlines = np.hstack((0, sumstrong > 0)).astype('bool')
    centerlines = centerlines[cclabels]

    return centerlines
コード例 #5
0
def biggest_region_3D(array):
    if len(array.shape) == 4:
        im_np = np.squeeze(array)
    else:
        im_np = array
    struct = np.full((3, 3, 3), 1)
    c = 0
    maxn = im_np.max()
    arr = np.where(im_np >= (maxn - 0.2), 1, 0)
    lab, num_reg = ndlabel(arr, structure=struct)
    h = np.zeros(num_reg + 1)
    for i in range(num_reg):
        z = np.where(lab == (i + 1), 1, 0)
        h[i + 1] = z.sum()
        if h[i + 1] == h.max():
            c = i + 1
    lab = np.where(lab == c, 1, 0)
    return lab