コード例 #1
0
ファイル: opt.py プロジェクト: marionmari/pyGPs
    def findMin(self, x, y, numIters = 100):
        meanfunc = self.model.meanfunc
        covfunc = self.model.covfunc
        likfunc = self.model.likfunc
        inffunc = self.model.inffunc
        hypInArray = self._convert_to_array()
        try:
            opt = simplex(self._nlml, hypInArray, maxiter=numIters, disp=False, full_output=True)
            optimalHyp = deepcopy(opt[0])
            funcValue  = opt[1]
            warnFlag   = opt[4]
            if warnFlag == 1:
                self.logger.warning("Maximum number of function evaluations made")
            elif warnFlag ==  2:
                self.logger.warning("Maximum number of iterations exceeded.")
        except:
            self.errorCounter += 1
            if not self.searchConfig:
                raise Exception("Can not learn hyperparamters using Nelder-Mead.")
        self.trailsCounter += 1

        if self.searchConfig:
            searchRange = self.searchConfig.meanRange + self.searchConfig.covRange + self.searchConfig.likRange
            if not (self.searchConfig.num_restarts or self.searchConfig.min_threshold):
                raise Exception('Specify at least one of the stop conditions')
            while True:
                self.trailsCounter += 1                 # increase counter
                for i in range(hypInArray.shape[0]):   # random init of hyp
                    hypInArray[i] = np.random.uniform(low=searchRange[i][0], high=searchRange[i][1])
                # value this time is better than optiaml min value

                try:
                    thisopt = simplex(self._nlml, hypInArray, maxiter=numIters, disp=False, full_output=True)
                    if thisopt[1] < funcValue:
                        funcValue  = thisopt[1]
                        optimalHyp = thisopt[0]
                except:
                    self.errorCounter += 1

                if self.searchConfig.num_restarts and self.errorCounter > old_div(self.searchConfig.num_restarts, 2):
                    self.logger.warning("[Simplex] %d out of %d trails failed during optimization", self.errorCounter, self.trailsCounter)
                    raise Exception("Over half of the trails failed for Nelder-Mead")
                if self.searchConfig.num_restarts and self.trailsCounter > self.searchConfig.num_restarts-1:         # if exceed num_restarts
                    self.logger.warning("[Simplex] %d out of %d trails failed during optimization", self.errorCounter, self.trailsCounter)
                    return optimalHyp, funcValue
                if self.searchConfig.min_threshold and funcValue <= self.searchConfig.min_threshold:           # reach provided mininal
                    self.logger.warning("[Simplex] %d out of %d trails failed during optimization", self.errorCounter, self.trailsCounter)
                    return optimalHyp, funcValue
        return optimalHyp, funcValue
コード例 #2
0
def simplex_fit(x, y, fitFunction, p0=None, y_sigmas=None):
    """Optimizes fit parameters using assuming least-square using simplex algo.
    Returns array with fit parameters and the sum of the deviations squared (fit quality)"""

    yNominal = np.array(y)
    yError = [0.0001 for i in y]  # assuming 1 if no stdDev is given
    if isinstance(y[0], uncertainties.UFloat):
        yNominal = [i.nominal_value for i in y]
        yError = [i.std_dev for i in y]
    if y_sigmas is not None:
        yError = y_sigmas

    fitParameterCount = len(inspect.getargspec(fitFunction).args) - 1

    if p0 is None:
        p0 = [0 for i in range(fitParameterCount)
              ]  # starting from 0 if no initial guess is given

    squareErrorForFitFunction = lambda params, xData, yData, error: squareError(
        fitFunction, fitParameterCount, params, xData, yData, error)
    fitParams = simplex(squareErrorForFitFunction,
                        p0,
                        args=(x, y, yError),
                        disp=True,
                        full_output=0,
                        maxfun=1000000,
                        maxiter=1000000)
    fitQual = fitQuality(x, y, lambda xIn: fitFunction(xIn, *fitParams))

    return [fitParams, fitQual]
コード例 #3
0
def orientate_octahedra(S0, O, x0, y0, z0, n1, n2, n3, n1p, n2p, n3p):
    xinit = [0, 0, 0, 0, 0, 0]
    opt = simplex(func2,
                  xinit,
                  args=(S0, O, x0, y0, z0, n1, n2, n3, n1p, n2p, n3p),
                  full_output=0)
    return opt
コード例 #4
0
def get_rotation_angles(Sub1, n1, n2, Sub2, n3, n4, R):
    x0 = [0, 0, 0, 0, 0, 0]
    opt = simplex(func,
                  x0,
                  args=(Sub1, n1, n2, Sub2, n3, n4, R),
                  full_output=0)
    return opt
コード例 #5
0
def turn_alkyl(xo, yo, zo, xab, yab, zab):
    xinit = [0, 0, 0]
    opt = simplex(func3,
                  xinit,
                  args=(xo, yo, zo, xab, yab, zab),
                  full_output=0)
    return opt
コード例 #6
0
def turn_methyl(ux, uy, uz, x0, y0, z0, xc, yc, zc, lcc):
    xinit = [0, 0, 0]
    opt = simplex(func4,
                  xinit,
                  args=(ux, uy, uz, x0, y0, z0, xc, yc, zc, lcc),
                  full_output=0)
    return opt
コード例 #7
0
    def simplex(self):
        """
        NUMERICAL RECIPES: https://www.google.com/url?q=https://drive.google.com/file/d/1K6tg_um1G-5X-5hdgwKb8vKyBD5oz4vX/view?usp%3Dsharing&sa=D&ust=1606856195190000&usg=AFQjCNH2Sc8A5HVZrZb72T-DrPM2-1kRtQ
        """

        from scipy.optimize import fmin as simplex

        self.param = simplex(self.error,
                             5 * [5],
                             xtol=1e-50,
                             ftol=1e-50,
                             maxfun=1e6)
        print(self.param)

        self.fit = lambda x: func(x, *self.param)
        self._measureGoodness()
コード例 #8
0
def go_simplex(func,xdata,ydata,lb,ub,errors=None):
    params = -999. ; chi2n = -999.

    # Check that the degrees of freedom is larger than 1
    dof = len(xdata)-len(lb)
    if (dof<=1):
        sys.exit('HOD_FIT.py: The degrees of freedom should be >1')

    # Get random initial values within the boundaries given
    p1 = random.rand(len(lb))
    p1 = lb + p1*(ub-lb) 

    params = simplex(f_chi2,p1,args=(xdata,ydata,errors,func),full_output=0)

    model = func(xdata,*params)
    chi2n  = chi2(ydata,model,errors)/dof

    return params,chi2n
コード例 #9
0
ファイル: simplex.py プロジェクト: DimensionalScoop/kautschuk
def optimize(x, y, fitFunction, p0=None):
    """Optimizes fit parameters using assuming least-square using simplex algo.
    Returns array with fit parameters and the sum of the deviations squared (fit quality)"""

    yNominal = np.array(y)
    yError = [0.0001 for i in y]  # assuming 1 if no stdDev is given
    if isinstance(y[0], uncertainties.UFloat):
        yNominal = [i.nominal_value for i in y]
        yError = [i.std_dev for i in y]

    fitParameterCount = len(inspect.getargspec(fitFunction).args) - 1

    if p0 is None:
        p0 = [0 for i in range(fitParameterCount)]  # starting from 0 if no initial guess is given

    squareErrorForFitFunction = lambda params, xData, yData, error: squareError(fitFunction, fitParameterCount, params, xData, yData, error)
    fitParams = simplex(squareErrorForFitFunction, p0, args=(x, y, yError), disp=True, full_output=0, maxfun=1000000)
    fitQual = fitQuality(x, y, lambda xIn: fitFunction(xIn, *fitParams))

    return [fitParams, fitQual]
コード例 #10
0
def scatter(residuals_np,
            s_peculiar_vel_np,
            s_appmagTBmax_np,
            InitialGuess=0.15):
    """
    Function to compute the intrinsic scatter from the Hubble residuals by
        minimizing the -2*log(Likelihood) function in Eq. (6) of Blondin et al 2011.
    :param residuals_np : numpy array of Hubble residuals.
    :type residuals_np : ndarray.
    :param s_peculiar_vel_np : numpy array of peculiar-velocity uncertainties.
    :type s_peculiar_vel_np : ndarray.
    :param s_appmagTBmax_np : numpy array of apparent magnitude at t_Bmax
        uncertainties.
    :type s_appmagTBmax_np : ndarray.
    :param InitialGuess : Initial guess about the value of the intrinsic scatter.
        Default value = 0.15.
    :type InitialGuess : float.
    """
    int_scatter = simplex(neg2lnLikelihood,
                          InitialGuess,
                          args=(residuals_np, s_peculiar_vel_np,
                                s_appmagTBmax_np))
    return int_scatter[0]
コード例 #11
0
def scale_sky(sky_spec, sci_spec):
    """
    Fit the 1D sky spectrum to the 1D science spectrum allowing
    different families of OH lines to be scaled differently and
    the continuum to be scaled separately. 

    This module is code hijacked from the OSIRIS data redcution
    pipeline.
    """

    sky, sky_hdr = pyfits.getdata(sky_spec, header=True)
    sci, sci_hdr = pyfits.getdata(sci_spec, header=True)

    # Make a wavelength array for the sky object.
    sky_lambda = np.arange(len(sky), dtype=float)
    sky_lambda -= sky_hdr['CRPIX1'] - 1
    sky_lambda *= sky_hdr['CRDELT1']
    sky_lambda += sky_hdr['CRVAL1']

    # Full width in pixels of unresolved emission line
    line_half_width = 2
    npixw = 2 * line_half_width

    # Median filter the sky to get an estimate of the continuum.
    # Remove this continuum.
    backgnd = filters.median(sky, size=10 * line_half_width, mode='nearest')
    sky2 = sky - backgnd

    for ii in range(len(l_boundary) - 1):
        lr = np.where((sky_lambda >= l_boundary[ii])
                      & (sky_lambda < l_boundary[ii + 1]))[0]

        if len(lr) == 0:
            continue

        sky_lr = sky[lr]
        sky2_lr = sky2[lr]
        sci_lr = sci[lr]
        lam_lr = sky_lamda[lr]

        sky_median = np.median(sky2_lr)
        sky_stddev = np.std(sky2)

        w_skylines = np.where(sky2_lr > (10 * sky_median) + sky_stddev)[0]

        if len(w_skylines) > 0:
            # Make a mask for where line regions are and for where the
            # continuum is.
            line_mask = np.zeros(len(lr), dtype=float)
            line_mask[w_skylines] = 10.0

            # Convolve the mask with a "resolution-width" window.
            window = np.ones(npixw)
            line_mask = np.convolve(line_mask, window, mode='same')
            line_regions = line_mask > 0
            line_count = line_regions.sum()

            if (line_count >= 3) and ((len(line_regions) - line_count) >= 3):
                # Remove the continuum from the science and object
                f_sci = interp1d(lam_lr[~line_regions], sci_lr[~line_regions])
                f_obj = inpterp1d(lam_lr[~line_regions], sky2[~line_regions])
                sci_no_cont = sci_lr[line_regions] - f_sci([lam_lr])

                out = simplex(fit_sky, init, args=(sci, sky))
コード例 #12
0
ファイル: sky.py プロジェクト: AtomyChan/JLU-python-code
def scale_sky(sky_spec, sci_spec):
    """
    Fit the 1D sky spectrum to the 1D science spectrum allowing
    different families of OH lines to be scaled differently and
    the continuum to be scaled separately. 

    This module is code hijacked from the OSIRIS data redcution
    pipeline.
    """

    sky, sky_hdr = pyfits.getdata(sky_spec, header=True)
    sci, sci_hdr = pyfits.getdata(sci_spec, header=True)

    # Make a wavelength array for the sky object.
    sky_lambda = np.arange(len(sky), dtype=float)
    sky_lambda -= sky_hdr['CRPIX1'] - 1
    sky_lambda *= sky_hdr['CRDELT1']
    sky_lambda += sky_hdr['CRVAL1']

    # Full width in pixels of unresolved emission line
    line_half_width = 2
    npixw = 2 * line_half_width

    # Median filter the sky to get an estimate of the continuum.
    # Remove this continuum.
    backgnd = filters.median(sky, size=10*line_half_width, mode='nearest')
    sky2 = sky - backgnd
    
    for ii in range(len(l_boundary)-1):
        lr = np.where((sky_lambda >= l_boundary[ii]) & (sky_lambda < l_boundary[ii+1]))[0]

        if len(lr) == 0:
            continue

        sky_lr = sky[lr]
        sky2_lr = sky2[lr]
        sci_lr = sci[lr]
        lam_lr = sky_lamda[lr]
        
        sky_median = np.median(sky2_lr)
        sky_stddev = np.std(sky2)

        w_skylines = np.where(sky2_lr > (10 * sky_median) + sky_stddev)[0]

        if len(w_skylines) > 0:
            # Make a mask for where line regions are and for where the
            # continuum is.
            line_mask = np.zeros(len(lr), dtype=float)
            line_mask[w_skylines] = 10.0

            # Convolve the mask with a "resolution-width" window.
            window = np.ones(npixw)
            line_mask = np.convolve(line_mask, window, mode='same')
            line_regions = line_mask > 0
            line_count = line_regions.sum()

            if (line_count >= 3) and ((len(line_regions) - line_count) >= 3):
                # Remove the continuum from the science and object
                f_sci = interp1d(lam_lr[~line_regions], sci_lr[~line_regions])
                f_obj = inpterp1d(lam_lr[~line_regions], sky2[~line_regions])
                sci_no_cont = sci_lr[line_regions] - f_sci([lam_lr])
                

                out = simplex(fit_sky, init, args=(sci, sky))
コード例 #13
0
ファイル: atlas_vs_i.py プロジェクト: arkhebuz/spaceismore
print fof(56.9)

plt.tight_layout()
#plt.savefig('atlas5.png', dpi=200)
plt.show()


if 1:
    C3 = 19.79 #km2s2
    DEC = 56.917 # deg

    lus = ext_LUS('mb')
    lus.set_boiloff(0.002)
    lus.set_time(4)
    lus.compute_stack_mass()
    lus.hit_from_incl(fof(DEC))
    #lus.print_info()
    pl = simplex(c3, 37000, args=(lus, C3))[0]
    print "2x MB-60 ext-LUS:", round(pl, -2)

    lus2 = ext_LUS('rl')
    lus2.set_boiloff(0.002)
    lus2.set_time(4)
    lus2.compute_stack_mass()
    lus2.hit_from_incl(fof(DEC))
    #lus.print_info()
    pl = simplex(c3, 37000, args=(lus2, C3))[0]
    print "2x RL-10 ext-LUS:", round(pl, -2)


コード例 #14
0
ファイル: IM_C3.py プロジェクト: arkhebuz/spaceismore
def all_the_rest(lus, offset, loiter, save = 0):
    lus.set_launch_date(offset)
    lus.set_time(offset+loiter)
    lus.print_info()

    print "Launching numerical simualtion..."
    C3_target = allc3req[offset+loiter]
    ext_LUS_payload = simplex(c3, 27000, args=(lus, C3_target))[0]
    print "         Payload: {0} kg @ [{1}off, {2}loi] ".format(round(ext_LUS_payload,2), offset, loiter)

    # Get parking orbit parameters
    __, __, pery, apo, transorb_period, br_time_1, br_time_2 = c3(ext_LUS_payload, lus, target_C3 = C3_target, rich_return = 1)

    # Plot generation
    print "\nDeploying C3@{0}% boiloff rate chart...".format(100*lus.Boiloff)

    # C3 plot data generation.
    allc3 = []
    newt = []
    for day in range(loiter+1):
        lus.set_time(offset+day)
        allc3.append(c3(ext_LUS_payload, lus))
        newt.append(day+offset)

    # Chart name.
    name = "C3 @ [{0}%/d boiloff rate, {1}-day loiter time]".format(lus.Boiloff*100, loiter)

    # ext_LUS C3 curve annotation text at start.
    anno2_text = r"$Diff:\ {0} \ km^{{2}}s^{{-2}}$".format(round(allc3[0]-allc3req[offset], 2))

    # ext_LUS C3 curve annotation text at end.
    anno3_text = r"$Diff:\ {0} \ km^{{2}}s^{{-2}}$".format(round(allc3[loiter]-allc3req[offset+loiter], 2))

    # Additional information.
    anno4_text = ("Payload: {0} kg \n".format(round(ext_LUS_payload,-2))
                 +"Engines: {0}\n".format(lus.Engines)
                 +"Initial T/W: {0}\n".format(round(lus.Thrust/lus.Stack_mass, 3))
                 +"Burns: {0} s + {1} s\n".format(round(br_time_1,2), round(br_time_2,2))
                 +"Parking orbit: {0} x {1} km\n".format(round(pery/1000,1), round(apo/1000,1))
                 +"Orbital period: {0} hour".format(round(transorb_period,2)) )

    # Name of chart file.
    filename = ("C3-{0}-[{1}, {2}]-".format(lus.Boiloff, offset, loiter)
               +"{0}kg-{1}-{1}kg_add".format(round(ext_LUS_payload,2), lus.Engines, lus.Stage_additions) )

    # Creating plot.
    plt.figure(figsize=(7.5, 4.5), dpi=180) # (11, 8) 80dpi dla full, (7.5, 4.5) 180dpi dla small


    # Plot ext_LUS C3
    plt.plot([swp_time(i) for i in newt],
             allc3,
             label="Instantaneous C3")

    # Plot required C3
    plt.plot([swp_time(i) for i in alltc3req],
             allc3req,
             label='Required C3')

    # Plot reentry speed barrier line
    plt.plot([swp_time(20)]*2,
             [38, 44],
             color='red',
             linewidth=1.5,
             linestyle="--")

    # Annotate reentry speed barrier line
    plt.annotate(r'Capsule Ventry barrier',
                 xy=(swp_time(20), 43.2),
                 xycoords='data',
                 xytext=(-150, +20),
                 textcoords='offset points',
                 fontsize=12,
                 bbox=dict(facecolor='white', edgecolor='None', alpha=0.65),
                 arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2") )

    # Annotate ext_LUS C3 curve at start
    plt.annotate(anno2_text,
                 xy=(swp_time(newt[0]), allc3[0]),
                 xycoords='data',
                 xytext=(swp_time(8.5), 41.5),
                 textcoords='data',
                 fontsize=12,
                 bbox=dict(facecolor='white', edgecolor='None', alpha=0.65),
                 arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.1") )

    # Annotate ext_LUS C3 curve at end
    plt.annotate(anno3_text,
                 xy=(swp_time(newt[loiter]), allc3[loiter] ),
                 xycoords='data',
                 xytext=(swp_time(15), 41.0),
                 textcoords='data',
                 fontsize=12,
                 bbox=dict(facecolor='white', edgecolor='None', alpha=0.65),
                 arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.1") )

    # Put additional information in place
    plt.text(swp_time(0.6), 38.2,
             anno4_text,
             style='italic',
             fontsize=10,
             bbox={'facecolor':'white', 'alpha':0.5, 'pad':10} )

    # Add labels, tittle, legend
    #plt.xlabel('Date')
    plt.ylabel('C3 [$km^2s^{-2}$]')
    #plt.title(name)
    plt.legend(loc='upper left', prop={'size':12})

    # Axis and grid modyfications
    rc('xtick', labelsize=8)
    plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
    plt.gca().xaxis.set_major_locator(mdates.AutoDateLocator(minticks=6, maxticks=10))
    plt.gca().xaxis.set_minor_locator(mdates.DayLocator())
    plt.gcf().autofmt_xdate()

    plt.gca().yaxis.set_major_locator(plt.MultipleLocator(1.0))
    #plt.gca().yaxis.set_minor_locator(plt.MultipleLocator(0.1)

    plt.gca().xaxis.grid(True,'minor')
    #plt.gca().yaxis.grid(True,'minor')
    plt.gca().xaxis.grid(True,'major', linewidth=1)
    plt.gca().yaxis.grid(True,'major', linewidth=1)

    plt.tight_layout()

    if save:
        plt.savefig(filename+'.png', dpi=200)

    plt.show()
コード例 #15
0
ファイル: exercise.py プロジェクト: 2php/python4mpia
    return numpy.exp(-residual*residual/2.0)

# Create data.
X = []
Y = []
for x in range(-5, 6, 1):
    X.append(x)
    Y.append(math.exp(-x*x/2.0))
# Add Gaussian noise to data.
Y = Y + numpy.random.normal(0.0, 0.1, len(Y))


import scipy.optimize as optimization

guess = [1.0, 2.0]
print optimization.curve_fit(func4curve_fit, X, Y, guess)


def func4Simplex(params, X, Y):
	mu    = params[0]
	sigma = params[1]
	chi2  = 0.0
	for n in range(len(X)):
		residual = Y[n] - func4curve_fit(X[n], mu, sigma)
		chi2 = chi2 + residual*residual
	return chi2

from scipy.optimize import fmin as simplex
print simplex(func4Simplex, guess, args=(X, Y))

コード例 #16
0
ファイル: ce.py プロジェクト: georgeyumnam/pylada
  def __call__(self, indiv):
    from numpy import arange, average, arrays, zeros
    from scipy.optimize import fmin as simplex
#   from scipy.optimize import fmin_powell as simplex
    from ...ce import leave_many_out, leave_one_out

    assert len(self._mlclasses) - self._fixed == len(indiv.genes),\
           "Individual is of incorrect size.\n"

    self.nfun = 0
    def callable_loo(x):
      from math import sqrt, log as ln, fabs, exp
      if self.nfun > EvalFitPairs.max_nfuncs: raise StopIteration
      if fabs(x[0]) > EvalFitPairs.max_pow: raise ValueError
      if fabs(x[1]) > EvalFitPairs.max_pow: raise ValueError
      self.nfun += 1
      self.fitter.alpha = x[0]
      self.fitter.tcoef = 100*exp(x[1])
      errors = leave_one_out(self.fitter)
      npreds, nstr = errors.shape
      prediction = errors[ arange(errors.shape[0]), arange(errors.shape[0]) ]
      return sqrt(average(prediction*prediction))
    def callable_lmo(x):
      from math import sqrt, log as ln, fabs, exp
      if self.nfun > EvalFitPairs.max_nfuncs: raise StopIteration
      if fabs(x[0]) > EvalFitPairs.max_pow: raise ValueError
      if fabs(x[1]) > EvalFitPairs.max_pow: raise ValueError
      self.nfun += 1
      self.fitter.alpha = x[0]
      self.fitter.tcoef = 100*exp(x[1])
      errors = leave_many_out(self.fitter, self._sets)
      npred, prediction = 0, 0e0
      for i in xrange(errors.shape[0]):
        for j in xrange(errors.shape[1]):
          if j not in self._sets[i]: continue
          prediction += errors[i,j] * errors[i,j]
          npred += 1
      return sqrt(prediction / float(npred))
    which_callable = callable_lmo
    if len(self._sets) == 0: which_callable = callable_loo

    # creates pair values.
    pairs = [ self.pairs[0] ]
    while pairs[-1] < self.pairs[1]:
      pairs.append( pairs[-1] + self.pairs[2] )
    if pairs[-1] != self.pairs[1]: pairs.append( self.pairs[1] )

    x0 = array([1.1,1.0])
    minvals = None
    for p in pairs:
      onoffs = zeros((len(self._mlclasses),), dtype=bool)
      for i, index in enumerate(self._pairindex[:-1]):
        nbpairs = min(i+p, self._pairindex[index+1])
        onoffs[i:nbpairs] = True
      onoffs[self._pairindex[-1]:self._fixed] = True
      onoffs[self._fixed:] = indiv.genes
      self.fitter.extinguish_cluster(onoffs, mask=True) 

#     x0, fopt, dummy, dummy, dummy, dummy = \
      fopt, iter, = 0,0
      try:
        x0, fopt, iter, dummy, dummy = \
            simplex(which_callable, x0, ftol=0.1, xtol=0.1, full_output=True, 
                    disp=False, maxfun=20, maxiter=20)
      except StopIteration:
        fopt = 1e12; x0 = array([1.1,1.0])
      except ValueError:
        fopt = 1e12; x0 = array([1.1,1.0])
      if minvals is None or minvals[0] > fopt:  minvals = (fopt, iter)

    return minvals[0]
コード例 #17
0
ファイル: untitle11.py プロジェクト: tusharshende/flash
# Define the objective function to be minimised by Simplex.
# params ... array holding the values of the fit parameters.
# X      ... array holding x-positions of observed data.
# Y      ... array holding y-values of observed data.
# Err    ... array holding errors of observed data.
def func(params, X, Y, Err):
    # extract current values of fit parameters from input array
    a = params[0]
    b = params[1]
    c = params[2]
    # compute chi-square
    chi2 = 0.0
    for n in range(len(X)):
        x = X[n]
        # The function y(x)=a+b*x+c*x^2 is a polynomial
        # in this example.
        y = a + b*x + c*x*x

        chi2 = chi2 + (Y[n] - y)*(Y[n] - y)/(Err[n]*Err[n])
    return chi2

xdata = [0.0,1.0,2.0,3.0,4.0,5.0]
ydata = [0.1,0.9,2.2,2.8,3.9,5.1]
sigma = [1.0,1.0,1.0,1.0,1.0,1.0]

#Initial guess.
x0    = [0.0, 0.0, 0.0]

# Apply downhill Simplex algorithm.
print simplex(func, x0, args=(xdata, ydata, sigma), full_output=0)
コード例 #18
0
def solve_branch_cut(weights, values, max_w):
    values = np.asarray(values)
    best_solution = None
    best_value = -np.inf
    subproblems = deque([(np.asarray(weights).reshape(1, 3),
                          np.asarray(max_w).reshape(1, 1))])
    nodes_opened = 0

    while subproblems:
        A_parent, b_parent = subproblems.popleft()
        nodes_opened += 1
        #  if nodes_opened % 5 == 0:
        #      print(nodes_opened)

        # Solve relaxed subproblem
        res = simplex(-values, A_parent, b_parent)
        if not res.success:
            if res.status == 1:
                print("Iteration limit reached... mby cycles?")
            elif res.status == 2:
                continue  # Infeasible subproblem
            else:
                print(
                    "Subproblem appears to be unbounded... mby bad initial problem?"
                )
        # Filter relaxed solution for zeros
        res.x[np.isclose(res.x, 0)] = 0

        # Check if subspace's relaxed optimal value is above current best value
        if -res.fun <= best_value:
            continue  # skip branching on this subproblem

        # Find basic fractional elements
        fracts = []
        for i in range(len(res.x)):
            if not res.x[i].is_integer():
                fracts.append(i)
        # Check if solution is in integer space
        if not fracts:
            best_solution = res.x.astype('int')
            best_value = int(-res.fun)
            continue

        # Select a fractional element to branch from
        branch_i = fracts[0]

        # Create new constrains
        down = np.floor(res.x[branch_i])
        constrain_1 = np.zeros((1, len(values)))
        constrain_1[0, branch_i] = 1
        A_child_1 = np.concatenate([A_parent, constrain_1])
        b_child_1 = np.concatenate([b_parent, np.array([[down]])])
        subproblems.append((A_child_1, b_child_1))

        up = np.ceil(res.x[branch_i])
        constrain_2 = np.zeros((1, len(values)))
        constrain_2[0, branch_i] = -1
        A_child_2 = np.concatenate([A_parent, constrain_2])
        b_child_2 = np.concatenate([b_parent, np.array([[-up]])])
        subproblems.append((A_child_2, b_child_2))

    return best_solution, best_value, nodes_opened
コード例 #19
0
def read_atom_locations(path, file, n0, n1, n2, n3, n4, n5, ax, f1):
    x, y, z = [], [], []
    xi, yi, zi = [], [], []
    label = []
    f = open(path + file, "r")
    data = f.readlines()
    for line in data:
        words = line.split()
        label.append(words[0])
        xi.append(words[1])
        yi.append(words[2])
        zi.append(words[3])
    f.close()

    xmi, ymi, zmi = [], [], []
    xm, ym, zm = [], [], []
    labelm = []
    f = open(path + "methyl.xyz", "r")
    data = f.readlines()
    for line in data:
        words = line.split()
        labelm.append(words[0])
        xmi.append(words[1])
        ymi.append(words[2])
        zmi.append(words[3])
    f.close()

    S0 = define_central_octa(xi, yi, zi, n0, n1, n2, n3, n4, n5)

    #Rotate into conveniant orientation : (at_3-at_4 axis) = (001)
    ux = float(S0[3][0]) - float(S0[4][0])
    uy = float(S0[3][1]) - float(S0[4][1])
    uz = float(S0[3][2]) - float(S0[4][2])
    norm = np.sqrt(ux * ux + uy * uy + uz * uz)
    ux = ux / norm
    uy = uy / norm
    uz = uz / norm

    G = barycenter(S0)

    xinit = [0, 0, 0]
    opt = simplex(func3, xinit, args=(0, 0, 1, ux, uy, uz), full_output=0)
    # Rotate & move the atoms of the residu without any terminating CH3 fragments
    for i in range(len(xi)):
        vect1 = [[float(xi[i]) - float(G[0])], [float(yi[i]) - float(G[1])],
                 [float(zi[i]) - float(G[2])]]
        vect2 = move3(opt[0], opt[1], opt[2], vect1)
        x.append(vect2[0])
        y.append(vect2[1])
        z.append(vect2[2])

    for i in range(54):
        ax.scatter(float(x[i]), float(y[i]), float(z[i]), c='blue', s=30)

    f = open("./" + "monomer_0.xyz", "w")
    for i in range(len(x)):
        line = label[i] + " " + str(float(x[i])) + " " + str(float(
            y[i])) + " " + str(float(z[i])) + "\n"
        f1.write(line)
        f.write(line)
    f.close()

    # Operate the same displacement for the terminating CH3 fragments
    for i in range(len(xmi)):
        vect1 = [[float(xmi[i]) - float(G[0])], [float(ymi[i]) - float(G[1])],
                 [float(zmi[i]) - float(G[2])]]
        vect2 = move3(opt[0], opt[1], opt[2], vect1)
        xm.append(vect2[0])
        ym.append(vect2[1])
        zm.append(vect2[2])

    # Do the same for the central octahedra
    S = []
    S = define_central_octa(x, y, z, n0, n1, n2, n3, n4, n5)

    return S, label, x, y, z, labelm, xm, ym, zm
コード例 #20
0
ファイル: sessimporter.py プロジェクト: arkhebuz/spaceismore
def pload(C3_target, lus = lusrl):
    return simplex(c3, 27000, args=(lus, C3_target))[0]
コード例 #21
0
    def findMin(self, x, y, numIters=100):
        meanfunc = self.model.meanfunc
        covfunc = self.model.covfunc
        likfunc = self.model.likfunc
        inffunc = self.model.inffunc
        hypInArray = self._convert_to_array()
        try:
            opt = simplex(self._nlml,
                          hypInArray,
                          maxiter=numIters,
                          disp=False,
                          full_output=True)
            optimalHyp = deepcopy(opt[0])
            funcValue = opt[1]
            warnFlag = opt[4]
            if warnFlag == 1:
                self.logger.warning(
                    "Maximum number of function evaluations made")
            elif warnFlag == 2:
                self.logger.warning("Maximum number of iterations exceeded.")
        except:
            self.errorCounter += 1
            if not self.searchConfig:
                raise Exception(
                    "Can not learn hyperparamters using Nelder-Mead.")
        self.trailsCounter += 1

        if self.searchConfig:
            searchRange = self.searchConfig.meanRange + self.searchConfig.covRange + self.searchConfig.likRange
            if not (self.searchConfig.num_restarts
                    or self.searchConfig.min_threshold):
                raise Exception('Specify at least one of the stop conditions')
            while True:
                self.trailsCounter += 1  # increase counter
                for i in range(hypInArray.shape[0]):  # random init of hyp
                    hypInArray[i] = np.random.uniform(low=searchRange[i][0],
                                                      high=searchRange[i][1])
                # value this time is better than optiaml min value

                try:
                    thisopt = simplex(self._nlml,
                                      hypInArray,
                                      maxiter=numIters,
                                      disp=False,
                                      full_output=True)
                    if thisopt[1] < funcValue:
                        funcValue = thisopt[1]
                        optimalHyp = thisopt[0]
                except:
                    self.errorCounter += 1

                if self.searchConfig.num_restarts and self.errorCounter > old_div(
                        self.searchConfig.num_restarts, 2):
                    self.logger.warning(
                        "[Simplex] %d out of %d trails failed during optimization",
                        self.errorCounter, self.trailsCounter)
                    raise Exception(
                        "Over half of the trails failed for Nelder-Mead")
                if self.searchConfig.num_restarts and self.trailsCounter > self.searchConfig.num_restarts - 1:  # if exceed num_restarts
                    self.logger.warning(
                        "[Simplex] %d out of %d trails failed during optimization",
                        self.errorCounter, self.trailsCounter)
                    return optimalHyp, funcValue
                if self.searchConfig.min_threshold and funcValue <= self.searchConfig.min_threshold:  # reach provided mininal
                    self.logger.warning(
                        "[Simplex] %d out of %d trails failed during optimization",
                        self.errorCounter, self.trailsCounter)
                    return optimalHyp, funcValue
        return optimalHyp, funcValue
コード例 #22
0
ファイル: code-simplex.py プロジェクト: 2php/python4mpia
from scipy.optimize import fmin as simplex

def func(params, X, Y):
	# extract current values of fit parameters from input array
	a = params[0]
	b = params[1]
	c = params[2]
	# compute chi-square
	chi2 = 0.0
	for n in range(len(X)):
		x = X[n]
		# The function y(x) is a polynomial in this example.
		y = a + b*x + c*x*x
		
		chi2 = chi2 + (Y[n] - y)*(Y[n] - y)
	return chi2

xdata = [0.0,1.0,2.0,3.0,4.0,5.0]
ydata = [0.1,0.9,2.2,2.8,3.9,5.1]
sigma = [1.0,1.0,1.0,1.0,1.0,1.0]

#Initial guess.
x0    = [0.0, 0.0, 0.0]

# Apply downhill Simplex algorithm.
print simplex(func, x0, args=(xdata, ydata), xtol=0.0001, ftol=0.0001, maxiter=None, full_output=0)
コード例 #23
0
#######################################################################
#                        Branch & Cut Solution                        #
#######################################################################


best_solution = None
opt_value = -np.inf
subproblems = deque([(A, b)])
nodes_opened = 0

while subproblems:
    A_parent, b_parent = subproblems.popleft()
    nodes_opened += 1

    # Solve relaxed subproblem
    res = simplex(-profit, A_parent, b_parent)
    if not res.success:
        if res.status == 1:
            print("Iteration limit reached... mby cycles?")
        elif res.status == 2:
            continue  # Infeasible subproblem
        else:
            print("Subproblem appears to be unbounded... mby bad initial problem?")
    # Filter relaxed solution for zeros
    res.x[np.isclose(res.x, 0)] = 0

    # Check if subspace's relaxed optimal value is above current best value
    if -res.fun <= opt_value:
        continue  # skip branching on this subproblem

    # Find basic fractional elements