コード例 #1
0
 def test_cheb_even_low_attenuation(self):
     cheb_even_low_at_true = array([1.000000, 0.451924, 0.51027,
                                    0.541338, 0.541338, 0.51027,
                                    0.451924, 1.000000])
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_even = windows.chebwin(8, at=-10)
     assert_array_almost_equal(cheb_even, cheb_even_low_at_true, decimal=4)
コード例 #2
0
ファイル: test_windows.py プロジェクト: charris/scipy
 def test_cheb_odd_low_attenuation(self):
     cheb_odd_low_at_true = array([1.000000, 0.519052, 0.586405,
                                   0.610151, 0.586405, 0.519052,
                                   1.000000])
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_odd = windows.chebwin(7, at=10)
     assert_array_almost_equal(cheb_odd, cheb_odd_low_at_true, decimal=4)
コード例 #3
0
 def test_cheb_odd_low_attenuation(self):
     cheb_odd_low_at_true = array([1.000000, 0.519052, 0.586405,
                                   0.610151, 0.586405, 0.519052,
                                   1.000000])
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_odd = windows.chebwin(7, at=10)
     assert_array_almost_equal(cheb_odd, cheb_odd_low_at_true, decimal=4)
コード例 #4
0
ファイル: test_windows.py プロジェクト: charris/scipy
 def test_cheb_even_low_attenuation(self):
     cheb_even_low_at_true = array([1.000000, 0.451924, 0.51027,
                                    0.541338, 0.541338, 0.51027,
                                    0.451924, 1.000000])
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_even = windows.chebwin(8, at=-10)
     assert_array_almost_equal(cheb_even, cheb_even_low_at_true, decimal=4)
コード例 #5
0
 def test_basic(self):
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         assert_allclose(windows.chebwin(6, 100),
                         [0.1046401879356917, 0.5075781475823447, 1.0, 1.0,
                          0.5075781475823447, 0.1046401879356917])
         assert_allclose(windows.chebwin(7, 100),
                         [0.05650405062850233, 0.316608530648474,
                          0.7601208123539079, 1.0, 0.7601208123539079,
                          0.316608530648474, 0.05650405062850233])
         assert_allclose(windows.chebwin(6, 10),
                         [1.0, 0.6071201674458373, 0.6808391469897297,
                          0.6808391469897297, 0.6071201674458373, 1.0])
         assert_allclose(windows.chebwin(7, 10),
                         [1.0, 0.5190521247588651, 0.5864059018130382,
                          0.6101519801307441, 0.5864059018130382,
                          0.5190521247588651, 1.0])
         assert_allclose(windows.chebwin(6, 10, False),
                         [1.0, 0.5190521247588651, 0.5864059018130382,
                          0.6101519801307441, 0.5864059018130382,
                          0.5190521247588651])
コード例 #6
0
ファイル: test_windows.py プロジェクト: charris/scipy
 def test_basic(self):
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         assert_allclose(windows.chebwin(6, 100),
                         [0.1046401879356917, 0.5075781475823447, 1.0, 1.0,
                          0.5075781475823447, 0.1046401879356917])
         assert_allclose(windows.chebwin(7, 100),
                         [0.05650405062850233, 0.316608530648474,
                          0.7601208123539079, 1.0, 0.7601208123539079,
                          0.316608530648474, 0.05650405062850233])
         assert_allclose(windows.chebwin(6, 10),
                         [1.0, 0.6071201674458373, 0.6808391469897297,
                          0.6808391469897297, 0.6071201674458373, 1.0])
         assert_allclose(windows.chebwin(7, 10),
                         [1.0, 0.5190521247588651, 0.5864059018130382,
                          0.6101519801307441, 0.5864059018130382,
                          0.5190521247588651, 1.0])
         assert_allclose(windows.chebwin(6, 10, False),
                         [1.0, 0.5190521247588651, 0.5864059018130382,
                          0.6101519801307441, 0.5864059018130382,
                          0.5190521247588651])
コード例 #7
0
ファイル: linear_array.py プロジェクト: zxs1652/software
def array_factor(number_of_elements, scan_angle, element_spacing, frequency,
                 theta, window_type, side_lobe_level):
    """
    Calculate the array factor for a linear binomial excited array.
    :param window_type: The string name of the window.
    :param side_lobe_level: The sidelobe level for Tschebyscheff window (dB).
    :param number_of_elements: The number of elements in the array.
    :param scan_angle: The angle to which the main beam is scanned (rad).
    :param element_spacing: The distance between elements.
    :param frequency: The operating frequency (Hz).
    :param theta: The angle at which to evaluate the array factor (rad).
    :return: The array factor as a function of angle.
    """
    # Calculate the wavenumber
    k = 2.0 * pi * frequency / c

    # Calculate the phase
    psi = k * element_spacing * (cos(theta) - cos(scan_angle))

    # Calculate the coefficients
    if window_type == 'Uniform':
        coefficients = ones(number_of_elements)
    elif window_type == 'Binomial':
        coefficients = binom(number_of_elements - 1,
                             range(0, number_of_elements))
    elif window_type == 'Tschebyscheff':
        warnings.simplefilter("ignore", UserWarning)
        coefficients = chebwin(number_of_elements,
                               at=side_lobe_level,
                               sym=True)
    elif window_type == 'Kaiser':
        coefficients = kaiser(number_of_elements, 6, True)
    elif window_type == 'Blackman-Harris':
        coefficients = blackmanharris(number_of_elements, True)
    elif window_type == 'Hanning':
        coefficients = hanning(number_of_elements, True)
    elif window_type == 'Hamming':
        coefficients = hamming(number_of_elements, True)

    # Calculate the offset for even/odd
    offset = int(floor(number_of_elements / 2))

    # Odd case
    if number_of_elements & 1:
        coefficients = roll(coefficients, offset + 1)
        coefficients[0] *= 0.5
        af = sum(coefficients[i] * cos(i * psi) for i in range(offset + 1))
        return af / amax(abs(af))
    # Even case
    else:
        coefficients = roll(coefficients, offset)
        af = sum(coefficients[i] * cos((i + 0.5) * psi) for i in range(offset))
        return af / amax(abs(af))
コード例 #8
0
 def test_cheb_even_high_attenuation(self):
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_even = windows.chebwin(54, at=40)
     assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)
コード例 #9
0
ファイル: P8.py プロジェクト: DaDoctorProctor/Problems-U3-EP2
#Problema 8
import plotly.graph_objects as go
from numpy import *
from filter_lib_711 import *
from palitos2 import stem_plot
import scipy.signal.windows as ssw

ws = 0.6 * pi  #freq de rechazo sup.
wp = 0.7 * pi  #freq de paso sup.
a = 60  #atenuacion deseada

delta_w = abs(wp - ws)  #banda de transicion.
delta_f = delta_w / (2 * pi)  #banda de transicion normalizada

#Orden del filtro
M = int(ceil(a / (22 * delta_f)))
n = arange(M)

wc = (ws + wp) / 2  #freq de corte superior.

h = fpb_ideal(pi, M) - fpb_ideal(wc, M)  #dif de sin cardinales
#h = -fpb_ideal(wc,M) #diferencia de sin cardinal
w = ssw.chebwin(M, a)  #ventana chebyshev
hn = h * w

all_plots(hn=hn, wn=w, fs=100000000, store='eps')
コード例 #10
0
ファイル: test_windows.py プロジェクト: charris/scipy
 def test_cheb_even_high_attenuation(self):
     with suppress_warnings() as sup:
         sup.filter(UserWarning, "This window is not suitable")
         cheb_even = windows.chebwin(54, at=40)
     assert_array_almost_equal(cheb_even, cheb_even_true, decimal=4)
コード例 #11
0
ファイル: P6.py プロジェクト: DaDoctorProctor/-DSP-U3-EP1
w1 = array([1] * M)
z = [0] * (N - M)
wz = array(list(w1) + z)
r, i, m1, a = mi_dft(wz)

w2 = blackman(M)
z = [0] * (N - M)
wz = array(list(w2) + z)
r, i, m2, a = mi_dft(wz)

w3 = kaiser(M, 4)
z = [0] * (N - M)
wz = array(list(w3) + z)
r, i, m3, a = mi_dft(wz)

w4 = ssw.chebwin(M, -50)
z = [0] * (N - M)
wz = array(list(w4) + z)
r, i, m4, a = mi_dft(wz)

fig = go.Figure()
fig.add_trace(go.Scatter(x=arange(M), y=m1, name='Rectangular'))
fig.add_trace(go.Scatter(x=arange(M), y=m2, name='Blackman'))
fig.add_trace(go.Scatter(x=arange(M), y=m3, name='Kaiser'))
fig.add_trace(go.Scatter(x=arange(M), y=m4, name='Chebyshev'))
fig.update_xaxes(title_text='n')
fig.update_yaxes(title_text='W(m)')
fig.update_layout(title='Window Sample', xaxis=dict(range=[0, M - 1]))
fig.write_image("P6/W(m).eps")

m1n = 20 * log10(m1 / m1[0])
コード例 #12
0
#Cuarto
import plotly.graph_objects as go
from numpy import *
from filter_lib_711 import *
from palitos2 import stem_plot
import plotly.express as px
import scipy.signal.windows as ssw
from psutil import *
#from pandas import *

#step frequencies
wp = 0.4 * pi
#frequencia de rechazo
ws = 0.5 * pi
#atenucion deseada
a = 60

#banda de transicion normalizada
delta_f = (ws - wp) * (2 * pi)

#orden del filtro
M = int(ceil(a / (22 * delta_f)))
n = arange(M)

#frecuencia de corte (filtro pasa bajas ideal)
wc = (ws + wp) / 2
hd = fpb_ideal(wc, M)
w_cheb = ssw.chebwin(M, a)
h = hd * w_cheb

all_plots(hn=h, wn=w_cheb, fs=100000000, store='eps')
コード例 #13
0
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import hilbert, chirp, convolve
import scipy.io.wavfile as wav
from scipy.signal.windows import chebwin

rate, data = wav.read("test01.wav")

analytic_signal = hilbert(data)
amplitude_env = np.abs(analytic_signal)
win = chebwin(441,at=1,sym=False)
conv_signal = convolve(data,data,mode='same')


# plt.plot(data[(20*np.int(rate*0.01)):25*(np.int(rate*0.01))],label='signal')

plt.plot(conv_signal,label='env')

plt.show()
コード例 #14
0
ファイル: pyDSP.py プロジェクト: amckenna41/pySAR
    def pre_processing(self):
        """
        Complete various pre-processing steps for encoded protein sequences before
        doing any of the DSP-related functions or transformations. Zero-pad
        the sequences, remove any +/- infinity or NAN values, get the approximate
        protein spectra and window function parameter names.

        Parameters
        ----------
        :self (PyDSP object): 
            instance of PyDSP class.
            
        Returns
        -------
        None

        """
        #zero-pad encoded sequences so they are all the same length
        self.protein_seqs = zero_padding(self.protein_seqs)

        #get shape parameters of proteins seqs
        self.num_seqs = self.protein_seqs.shape[0]
        self.signal_len = self.protein_seqs.shape[1]

        #replace any positive or negative infinity or NAN values with 0
        self.protein_seqs[self.protein_seqs == -np.inf] = 0
        self.protein_seqs[self.protein_seqs == np.inf] = 0
        self.protein_seqs[self.protein_seqs == np.nan] = 0

        #replace any NAN's with 0's
        #self.protein_seqs.fillna(0, inplace=True)
        self.protein_seqs = np.nan_to_num(self.protein_seqs)

        #initialise zeros array to store all protein spectra
        self.fft_power = np.zeros((self.num_seqs, self.signal_len))
        self.fft_real = np.zeros((self.num_seqs, self.signal_len))
        self.fft_imag = np.zeros((self.num_seqs, self.signal_len))
        self.fft_abs = np.zeros((self.num_seqs, self.signal_len))

        #list of accepted spectra, window functions and filters
        all_spectra = ['power', 'absolute', 'real', 'imaginary']
        all_windows = [
            'hamming', 'blackman', 'blackmanharris', 'gaussian', 'bartlett',
            'kaiser', 'barthann', 'bohman', 'chebwin', 'cosine', 'exponential'
            'flattop', 'hann', 'boxcar', 'hanning', 'nuttall', 'parzen',
            'triang', 'tukey'
        ]
        all_filters = [
            'savgol', 'medfilt', 'symiirorder1', 'lfilter', 'hilbert'
        ]

        #set required input parameters, raise error if spectrum is none
        if self.spectrum == None:
            raise ValueError(
                'Invalid input Spectrum type ({}) not available in valid spectra: {}'
                .format(self.spectrum, all_spectra))
        else:
            #get closest correct spectra from user input, if no close match then raise error
            spectra_matches = (get_close_matches(self.spectrum,
                                                 all_spectra,
                                                 cutoff=0.4))

            if spectra_matches == []:
                raise ValueError(
                    'Invalid input Spectrum type ({}) not available in valid spectra: {}'
                    .format(self.spectrum, all_spectra))
            else:
                self.spectra = spectra_matches[0]  #closest match in array

        if self.window_type == None:
            self.window = 1  #window = 1 is the same as applying no window
        else:
            #get closest correct window function from user input
            window_matches = (get_close_matches(self.window,
                                                all_windows,
                                                cutoff=0.4))

            #check if sym=True or sym=False
            #get window function specified by window input parameter, if no match then window = 1
            if window_matches != []:
                if window_matches[0] == 'hamming':
                    self.window = hamming(self.signal_len, sym=True)
                    self.window_type = "hamming"
                elif window_matches[0] == "blackman":
                    self.window = blackman(self.signal_len, sym=True)
                    self.window = "blackman"
                elif window_matches[0] == "blackmanharris":
                    self.window = blackmanharris(self.signal_len,
                                                 sym=True)  #**
                    self.window_type = "blackmanharris"
                elif window_matches[0] == "bartlett":
                    self.window = bartlett(self.signal_len, sym=True)
                    self.window_type = "bartlett"
                elif window_matches[0] == "gaussian":
                    self.window = gaussian(self.signal_len, std=7, sym=True)
                    self.window_type = "gaussian"
                elif window_matches[0] == "kaiser":
                    self.window = kaiser(self.signal_len, beta=14, sym=True)
                    self.window_type = "kaiser"
                elif window_matches[0] == "hanning":
                    self.window = hanning(self.signal_len, sym=True)
                    self.window_type = "hanning"
                elif window_matches[0] == "barthann":
                    self.window = barthann(self.signal_len, sym=True)
                    self.window_type = "barthann"
                elif window_matches[0] == "bohman":
                    self.window = bohman(self.signal_len, sym=True)
                    self.window_type = "bohman"
                elif window_matches[0] == "chebwin":
                    self.window = chebwin(self.signal_len, sym=True)
                    self.window_type = "chebwin"
                elif window_matches[0] == "cosine":
                    self.window = cosine(self.signal_len, sym=True)
                    self.window_type = "cosine"
                elif window_matches[0] == "exponential":
                    self.window = exponential(self.signal_len, sym=True)
                    self.window_type = "exponential"
                elif window_matches[0] == "flattop":
                    self.window = flattop(self.signal_len, sym=True)
                    self.window_type = "flattop"
                elif window_matches[0] == "boxcar":
                    self.window = boxcar(self.signal_len, sym=True)
                    self.window_type = "boxcar"
                elif window_matches[0] == "nuttall":
                    self.window = nuttall(self.signal_len, sym=True)
                    self.window_type = "nuttall"
                elif window_matches[0] == "parzen":
                    self.window = parzen(self.signal_len, sym=True)
                    self.window_type = "parzen"
                elif window_matches[0] == "triang":
                    self.window = triang(self.signal_len, sym=True)
                    self.window_type = "triang"
                elif window_matches[0] == "tukey":
                    self.window = tukey(self.signal_len, sym=True)
                    self.window_type = "tukey"

            else:
                self.window = 1  #window = 1 is the same as applying no window

        #calculate convolution from protein sequences
        if self.convolution is not None:
            if self.window is not None:
                self.convoled_seqs = signal.convolve(
                    self.protein_seqs, self.window, mode='same') / sum(
                        self.window)

        if self.filter != None:
            #get closest correct filter from user input
            filter_matches = (get_close_matches(self.filter,
                                                all_filters,
                                                cutoff=0.4))

            #set filter attribute according to approximate user input
            if filter_matches != []:
                if filter_matches[0] == 'savgol':
                    self.filter = savgol_filter(self.signal_len,
                                                self.signal_len)
                elif filter_matches[0] == 'medfilt':
                    self.filter = medfilt(self.signal_len)
                elif filter_matches[0] == 'symiirorder1':
                    self.filter = symiirorder1(self.signal_len, c0=1, z1=1)
                elif filter_matches[0] == 'lfilter':
                    self.filter = lfilter(self.signal_len)
                elif filter_matches[0] == 'hilbert':
                    self.filter = hilbert(self.signal_len)
            else:
                self.filter = ""  #no filter
コード例 #15
0
import plotly.graph_objects as go
from dft_lib_correct import *
from numpy import *
import scipy.signal.windows as ssw

N = 512
M = 32

w1 = array([1] * M)
z = [0] * (N - M)
wz = array(list(w1) + z)
r, i, m1, a = mi_dft(wz)

w2 = ssw.chebwin(M, -20 * 1.5)
z = [0] * (N - M)
wz = array(list(w2) + z)
r, i, m2, a = mi_dft(wz)

w3 = ssw.chebwin(M, -20 * 2)
z = [0] * (N - M)
wz = array(list(w3) + z)
r, i, m3, a = mi_dft(wz)

w4 = ssw.chebwin(M, -20 * 2.5)
z = [0] * (N - M)
wz = array(list(w4) + z)
r, i, m4, a = mi_dft(wz)

w5 = ssw.chebwin(M, -20 * 3)
z = [0] * (N - M)
wz = array(list(w5) + z)
コード例 #16
0
ファイル: P9.py プロジェクト: DaDoctorProctor/Problems-U3-EP2
#problema 9
import plotly.graph_objects as go
from numpy import *
from filter_lib_711 import *
from palitos2 import stem_plot
import scipy.signal.windows as ssw

wp1 = 0.2*pi
ws1 = 0.3*pi
ws2 = 0.7*pi
wp2 = 0.8*pi
a = 60

delta_w = min(abs(ws1-wp1),abs(wp2-ws2)) #seleccion de la banda de trans.
delta_f = delta_w/(2*pi)# banda de transicion normalizada

#orden del filtro
M = int(ceil(a/(22*delta_f)))
n = arange(M)

wc1 = (wp1*ws1)/2
wc2 = (ws2*wp2)/2

h = fpb_ideal(pi,M) - fpb_ideal(wc2,M) + fpb_ideal(wc1,M)
w = ssw.chebwin(M,a)
hn = h*w

all_plots(hn=hn,wn=w,fs = 100000000, store='eps')