#reading the number of vertices,edges and partitions required with open(f_name) as f: first_line = f.readline() graph_key = [int(s) for s in first_line.split() if s.isdigit()] n_vert = graph_key[0] n_edge = graph_key[1] n_partition = graph_key[2] #Constructing graph G = nx.Graph() G.add_nodes_from(range(n_vert)) G.add_edges_from(graph) #Computing laplacian L = nx.laplacian_matrix(G) L = csr_matrix.astype(L, dtype='f') # Computing eigen vectors eig_val, eig_vec = la.eigsh(L, 2, which='SM') def distance(p1, p2): return np.sum((p1 - p2)**2) # initialisation algorithm K++ def initialize(data, k): ''' intialized the centroids for K-means++ inputs: data - numpy array of data points having shape (200, 2)
labels1 = np.ndarray(shape=([len(ntypes1),2]),dtype=int) labels2 = np.ndarray(shape=([len(ntypes2),2]),dtype=int) for i, j in enumerate(sorted(ntypes1.keys())): if j in zgats: labels1[i] = [1,0] else: labels1[i] = [0,1] for i, j in enumerate(sorted(ntypes2.keys())): if j in zgats: labels2[i] = [1,0] else: labels2[i] = [0,1] feat1 = csr_matrix(features1) feat2 = csr_matrix(features2) feat_csr1 = csr_matrix.astype(feat1,np.float32) feat_csr2 = csr_matrix.astype(feat2,np.float32) x = open("ind.logdec.x","wt") tx = open("ind.logdec.tx","wt") allx = open("ind.logdec.allx","wt") graf = open("ind.logdec.graph","wt") y = open("ind.logdec.y","wt") ty = open("ind.logdec.ty","wt") ally = open("ind.logdec.ally","wt") pkl.dump(labels2,y) pkl.dump(labels2,ally) pkl.dump(labels1,ty) pkl.dump(feat_csr2,x) pkl.dump(feat_csr2,allx)
def to_ndarray(l, dtype=int): assert len(l) > 0 assert len(l[0]) > 0 rows = len(l) cols = len(l[0]) arr = np.ndarray(shape=(rows, cols), dtype=int) for i, row in enumerate(l): arr[i] = row return arr labels_test = to_ndarray(labels_test) labels_train = to_ndarray(labels_train) labels_train_all = to_ndarray(labels_train_all) feat_csr_test = csr_matrix.astype(csr_matrix(features_test), np.float32) feat_csr_train = csr_matrix.astype(csr_matrix(features_train), np.float32) feat_csr_train_all = csr_matrix.astype(csr_matrix(features_train_all), np.float32) f_x = open("ind.logdec.x", "wb") f_tx = open("ind.logdec.tx", "wb") f_allx = open("ind.logdec.allx", "wb") f_graf = open("ind.logdec.graph", "wb") f_y = open("ind.logdec.y", "wb") f_ty = open("ind.logdec.ty", "wb") f_ally = open("ind.logdec.ally", "wb") print("label lengths (test, train, all, cnt):", len(labels_test), len(labels_train), len(labels_train_all), len(nfanins)), print("features size (test, train, all, cnt):", feat_csr_test.shape,