コード例 #1
0
    def tensor(self, shape, variant=None):
        key = construct_minmax_tensor_key(shape)
        # If a tensor with these properties exists already, then load it.
        if os.path.exists(key):
            return self.loader.load(key)
        else:
            # Otherwise, we must create a random tensor with the desired properties,
            # dump it to the output file, then return it.
            crds = self.generate_crds(shape)
            values = dict()
            for c in crds:
                ind_list = numpy.random.rand(2) * shape[-1]
                ind_list = ind_list.astype('int')
                start = numpy.min(ind_list)
                stop = numpy.max(ind_list)
                for i in range(start, stop):
                    temp = tuple(c[1:] + [i])
                    values[temp] = int(20 * numpy.random.rand() - 10)

            dok = sparse.DOK(shape, values)
            ind = tuple([e - 1 for e in shape])
            write_shape = False if ind in values.keys() else True
            TnsFileDumper().dump_dict_to_file(shape, dok.data, key,
                                              write_shape)
            result = dok.asformat('coo')
            return result
コード例 #2
0
 def random(self, shape, sparsity, variant=None):
     key = construct_random_tensor_key(shape, sparsity, variant)
     # If a tensor with these properties exists already, then load it.
     if os.path.exists(key):
         return self.loader.load(key)
     else:
         # Otherwise, we must create a random tensor with the desired properties,
         # dump it to the output file, then return it.
         result = sparse.random(shape, density=sparsity)
         dok = sparse.DOK(result)
         TnsFileDumper().dump_dict_to_file(shape, dok.data, key)
         return result
コード例 #3
0
    def sparse_window(self, num, variant=3):
        path = TENSOR_PATH
        key = "image" + str(num) + "-" + str(variant) + ".tns"
        key = os.path.join(path, "image", "tensors", key)

        shape = self.shape[num]

        if os.path.exists(key):
            return self.loader.load(key)
        else:
            result_np = self.dense_window(num)
            result = sparse.COO.from_numpy(result_np)
            dok = sparse.DOK(result)
            write_shape = result_np.flat[-1] == 0
            TnsFileDumper().dump_dict_to_file(shape, dok.data, key,
                                              write_shape)
            return result
コード例 #4
0
 def sparse_image(self, num, pt, variant=None, path='no'):
     key = construct_image_tensor_key(num, pt, variant)
     # If an image with these properties exists already, then load it.
     if os.path.exists(key):
         result = self.loader.load(key)
         self.shape[num] = result.shape
         return result
     else:
         # Otherwise, we must create load the image and preprocess it with the desired properties.
         # dump it to the output file, then return it.
         bin_img = self.dense_image(num, pt, variant, path)
         result = sparse.COO.from_numpy(bin_img)
         dok = sparse.DOK(result)
         write_shape = bin_img.flat[-1] == 0
         TnsFileDumper().dump_dict_to_file(self.shape[num], dok.data, key,
                                           write_shape)
         return result
コード例 #5
0
 def dump(self, tensor, path):
     self.dumper.dump_dict_to_file(tensor.shape,
                                   sparse.DOK(tensor).data, path)