コード例 #1
0
    def dfdx(guess):

        network.buses_t.v_ang.loc[now,sub_network.pvpqs] = guess[:len(sub_network.pvpqs)]

        network.buses_t.v_mag_pu.loc[now,sub_network.pqs] = guess[len(sub_network.pvpqs):]

        v_mag_pu = network.buses_t.v_mag_pu.loc[now,buses_o]
        v_ang = network.buses_t.v_ang.loc[now,buses_o]

        V = v_mag_pu*np.exp(1j*v_ang)

        index = r_[:len(buses_o)]

        #make sparse diagonal matrices
        V_diag = csr_matrix((V,(index,index)))
        V_norm_diag = csr_matrix((V/abs(V),(index,index)))
        I_diag = csr_matrix((sub_network.Y*V,(index,index)))

        dS_dVa = 1j*V_diag*np.conj(I_diag - sub_network.Y*V_diag)

        dS_dVm = V_norm_diag*np.conj(I_diag) + V_diag * np.conj(sub_network.Y*V_norm_diag)

        J00 = dS_dVa[1:,1:].real
        J01 = dS_dVm[1:,1+len(sub_network.pvs):].real
        J10 = dS_dVa[1+len(sub_network.pvs):,1:].imag
        J11 = dS_dVm[1+len(sub_network.pvs):,1+len(sub_network.pvs):].imag

        J = svstack([
            shstack([J00, J01]),
            shstack([J10, J11])
        ], format="csr")

        return J
コード例 #2
0
ファイル: pf.py プロジェクト: jdedecca/PyPSA
    def dfdx(guess):

        network.buses_t.v_ang.loc[now,sub_network.pvpqs] = guess[:len(sub_network.pvpqs)]

        network.buses_t.v_mag_pu.loc[now,sub_network.pqs] = guess[len(sub_network.pvpqs):]

        v_mag_pu = network.buses_t.v_mag_pu.loc[now,buses_o]
        v_ang = network.buses_t.v_ang.loc[now,buses_o]

        V = v_mag_pu*np.exp(1j*v_ang)

        index = r_[:len(buses_o)]

        #make sparse diagonal matrices
        V_diag = csr_matrix((V,(index,index)))
        V_norm_diag = csr_matrix((V/abs(V),(index,index)))
        I_diag = csr_matrix((sub_network.Y*V,(index,index)))

        dS_dVa = 1j*V_diag*np.conj(I_diag - sub_network.Y*V_diag)

        dS_dVm = V_norm_diag*np.conj(I_diag) + V_diag * np.conj(sub_network.Y*V_norm_diag)

        J00 = dS_dVa[1:,1:].real
        J01 = dS_dVm[1:,1+len(sub_network.pvs):].real
        J10 = dS_dVa[1+len(sub_network.pvs):,1:].imag
        J11 = dS_dVm[1+len(sub_network.pvs):,1+len(sub_network.pvs):].imag

        J = svstack([
            shstack([J00, J01]),
            shstack([J10, J11])
        ], format="csr")

        return J
コード例 #3
0
ファイル: pf.py プロジェクト: zhxn30663/PyPSA
    def dfdx(guess, distribute_slack=False, slack_weights=None):

        last_pq = -1 if distribute_slack else None
        network.buses_t.v_ang.loc[
            now, sub_network.pvpqs] = guess[:len(sub_network.pvpqs)]
        network.buses_t.v_mag_pu.loc[
            now, sub_network.pqs] = guess[len(sub_network.pvpqs):last_pq]

        v_mag_pu = network.buses_t.v_mag_pu.loc[now, buses_o]
        v_ang = network.buses_t.v_ang.loc[now, buses_o]

        V = v_mag_pu * np.exp(1j * v_ang)

        index = r_[:len(buses_o)]

        #make sparse diagonal matrices
        V_diag = csr_matrix((V, (index, index)))
        V_norm_diag = csr_matrix((V / abs(V), (index, index)))
        I_diag = csr_matrix((sub_network.Y * V, (index, index)))

        dS_dVa = 1j * V_diag * np.conj(I_diag - sub_network.Y * V_diag)

        dS_dVm = V_norm_diag * np.conj(I_diag) + V_diag * np.conj(
            sub_network.Y * V_norm_diag)

        J10 = dS_dVa[1 + len(sub_network.pvs):, 1:].imag
        J11 = dS_dVm[1 + len(sub_network.pvs):, 1 + len(sub_network.pvs):].imag

        if distribute_slack:
            J00 = dS_dVa[:, 1:].real
            J01 = dS_dVm[:, 1 + len(sub_network.pvs):].real
            J02 = csr_matrix(slack_weights, (1, 1 + len(sub_network.pvpqs))).T
            J12 = csr_matrix((1, len(sub_network.pqs))).T
            J_P_blocks = [J00, J01, J02]
            J_Q_blocks = [J10, J11, J12]
        else:
            J00 = dS_dVa[1:, 1:].real
            J01 = dS_dVm[1:, 1 + len(sub_network.pvs):].real
            J_P_blocks = [J00, J01]
            J_Q_blocks = [J10, J11]

        J = svstack([shstack(J_P_blocks), shstack(J_Q_blocks)], format="csr")

        return J
コード例 #4
0
def _dfdx(guess, Y):
    """
    Compute the Jacobian matrix.

    Parameters
    ----------
    guess : numpy.ndarray
        The current v_guess for the roots of f(x), of size 2*(N-1), where elements
        [0,...,N-2] are the nodal voltage angles \theta_i and [N-1,...,2(N-1)]
        the nodal voltage magnitudes |V_i|. The slack bus variables are
        excluded.
    Y : scipy.sparse.csc_matrix
        The nodal admittance matrix of shape (N, N) as a sparse matrix.

    Returns
    -------
    J : scipy.sparse.csr_matrix
        The Jacobian matrix as a sparse matrix.
    """

    # Construct nodal voltage vector V, setting V_slack = 1+0j.
    v = _construct_v_from_guess(guess)

    index = np.array(range(len(v)))

    # Construct sparse diagonal matrices.
    v_diag = csr_matrix((v, (index, index)))
    v_norm_diag = csr_matrix((v / abs(v), (index, index)))
    i_diag = csr_matrix((Y * v, (index, index)))

    # Construct the Jacobian matrix.
    dS_dVa = 1j * v_diag * np.conj(i_diag - Y * v_diag)  # dS / d \theta
    dS_dVm = v_norm_diag * np.conj(i_diag) + v_diag * np.conj(
        Y * v_norm_diag)  # dS / d |V|

    J00 = dS_dVa[1:, 1:].real
    J01 = dS_dVm[1:, 1:].real
    J10 = dS_dVa[1:, 1:].imag
    J11 = dS_dVm[1:, 1:].imag

    J = svstack([shstack([J00, J01]), shstack([J10, J11])], format='csr')

    return J