コード例 #1
0
ファイル: __init__.py プロジェクト: pragyachawla/sp_utils
def ddm_response(ddm, width_ms, band_MHz=(1214., 1537.)):
    """
    Returns the factor by which the S/N of a pulse of a given width observed
    in a particular radio band should decrease given an error in dispersion
    measure.

    ddm
       Difference from optimal dispersion measure in pc/cm^3
    width_ms
       Pulse width in milliseconds
    band
       The bottom and top of the observing band in MHz
        (default: the Arecibo Mock band)
    """
    if _np.isscalar(ddm):
        ddm = _np.array([ddm])
        scal = True
    else:
        ddm = _np.array(ddm)
        scal = False
    band_MHz = _np.array(band_MHz)
    zeta = 6.91e-3 * ddm * _np.diff(band_MHz)[0] / (width_ms * (_np.mean(band_MHz)/1000.)**3)
    result = _np.zeros_like(ddm)
    where_nonzero = _np.where(zeta != 0)
    result[where_nonzero] = 0.5*_np.sqrt(_np.pi)*_erf(zeta[where_nonzero])/zeta[where_nonzero]
    result[zeta == 0] = 1.
    if scal: return result[0]
    else: return result
コード例 #2
0
def _distribution_singular(y_eval, w_q_pdf, y, theta_y, clip=True):
    """
    Obtain the distribution function from normalized weights (non-vectorized).

    .. note:: This will be deleted once the vectorized version has been tested.

    Parameters
    ----------
    y_eval : numpy.ndarray
        The point to evaluate distribution (d_y,) [Not Vectorized]
    w_q_pdf : numpy.ndarray
        The normalized weight matrix or weight vector [(n, n_q), (n,)]
    y : numpy.ndarray
        The training outputs (n, d_y)
    theta_y : numpy.ndarray
        Hyperparameters that parametrises the kernel on y (d_y,)

    Returns
    -------
    numpy.ndarray
        The distribution evaluated at y for each query point [(n_q,), 1]
    """
    # (n, d_y)
    all_cdf = 0.5 * (1 + _erf((y_eval - y) / (np.sqrt(2) * theta_y)))

    # (n,)
    each_cdf = np.prod(all_cdf, axis=1)

    # (n_q,) or constant
    cdf = np.dot(each_cdf, w_q_pdf)

    # Clip the distribution if required
    return np.clip(cdf, 0, 1) if clip else cdf
コード例 #3
0
ファイル: read_spd.py プロジェクト: matteobachetti/presto
def ddm_response(ddm, width_ms, band_MHz=(1214., 1537.)):
    """
    Returns the factor by which the S/N of a pulse of a given width observed
    in a particular radio band should decrease given an error in dispersion
    measure.

    ddm
       Difference from optimal dispersion measure in pc/cm^3
    width_ms
       Pulse width in milliseconds
    band
       The bottom and top of the observing band in MHz
        (default: the Arecibo Mock band)
    """
    if _np.isscalar(ddm):
        ddm = _np.array([ddm])
        scal = True
    else:
        ddm = _np.array(ddm)
        scal = False
    band_MHz = _np.array(band_MHz)
    zeta = 6.91e-3 * ddm * _np.diff(band_MHz)[0] / (
        width_ms * (_np.mean(band_MHz) / 1000.)**3)
    result = _np.zeros_like(ddm)
    where_nonzero = _np.where(zeta != 0)
    result[where_nonzero] = 0.5 * _np.sqrt(_np.pi) * _erf(
        zeta[where_nonzero]) / zeta[where_nonzero]
    result[zeta == 0] = 1.
    if scal: return result[0]
    else: return result
コード例 #4
0
def _Phi_prime_mu(s, sigma):
    """
    Derivative of the helper function _Phi(s) with respect to the mean input
    """
    if np.any(sigma < 0):
        raise ValueError('sigma needs to be larger than zero!')
    if np.any(sigma == 0):
        raise ZeroDivisionError('Function contains division by sigma!')

    return -np.sqrt(np.pi) / sigma * (s * np.exp(s**2 / 2.) *
                                      (1 + _erf(s / np.sqrt(2))) +
                                      np.sqrt(2) / np.sqrt(np.pi))
コード例 #5
0
def _derivative_of_firing_rates_wrt_mean_input(V_0_rel, V_th_rel, mu, sigma,
                                               tau_m, tau_r):
    """
    Derivative of the stationary firing rate without synaptic filtering
    with respect to the mean input

    Parameters
    ----------
    tau_m : float
        Membrane time constant in seconds.
    tau_s : float
        Synaptic time constant in seconds.
    tau_r : float
        Refractory time in seconds.
    V_th_rel : float
        Relative threshold potential in mV.
    V_0_rel : float
        Relative reset potential in mV.
    mu : float
        Mean neuron activity in mV.
    sigma : float
        Standard deviation of neuron activity in mV.

    Returns
    -------
    float
        Zero frequency limit of white noise transfer function in Hz/mV.
    """
    if np.any(sigma == 0):
        raise ZeroDivisionError('Phi_prime_mu contains division by sigma!')

    y_th = (V_th_rel - mu) / sigma
    y_r = (V_0_rel - mu) / sigma
    nu0 = _firing_rates_for_given_input(V_0_rel, V_th_rel, mu, sigma, tau_m,
                                        tau_r)
    return (np.sqrt(np.pi) * tau_m * np.power(nu0, 2) / sigma *
            (np.exp(y_th**2) * (1 + _erf(y_th)) - np.exp(y_r**2) *
             (1 + _erf(y_r))))
コード例 #6
0
def _Phi(s):
    """
    helper function to calculate stationary firing rates with synaptic
    filtering

    corresponds to u^-2 F in Eq. 53 of the following publication


    Schuecker, J., Diesmann, M. & Helias, M.
    Reduction of colored noise in excitable systems to white
    noise and dynamic boundary conditions. 1–23 (2014).
    """
    return np.sqrt(np.pi / 2.) * (np.exp(s**2 / 2.) *
                                  (1 + _erf(s / np.sqrt(2))))
コード例 #7
0
def gaussian_cdf(x, sigma=1):
    """
    Cumulative distribution function of a Gaussian distribution having area
    1 and standard deviation sigme (i.e., the running integral of gaussian(x,sigma)).

    Parameters
    ----------
    x:
        Distance from the center of the peak.
    sigma:
        Standard deviation of the underlying Gaussian distribution.

    """
    return 0.5 * _erf(x / (_ROOT2 * sigma)) + 0.5
コード例 #8
0
    def __init__(self, sizeMin, sizeMax, rho, sgma, bc, a0):

        # mass of carbon atom
        m_C = 12.0107 * _u.u

        nominator = (3 * _np.exp(-4.5 * sgma**2) * bc * m_C)
        denominator = ((2 * _np.pi)**1.5 * rho * a0**3 * sgma *
                       (1 + _erf((3 * sgma / _np.sqrt(2)) +
                                 (_np.log(a0 / 3.5 / _u.angstrom) /
                                  (sgma * _np.sqrt(2))))))
        # FIXME: what do we do if the denominator is zero
        if denominator != 0:
            B = (nominator / denominator).decompose()

        def f(a):
            return B / a * _np.exp(-0.5 * (_np.log(a / a0) / sgma)**2)

        super().__init__(sizeMin, sizeMax, f)
        return
コード例 #9
0
def _distribution_vector(y_eval, w_q_pdf, y, theta_y, clip=True):
    """
    Obtain the distribution function from normalized weights (vectorized).

    Parameters
    ----------
    y_eval : numpy.ndarray
        The point to evaluate distribution (n_eval, d_y) [Vectorized]
    w_q_pdf : numpy.ndarray
        The normalized weight matrix or weight vector [(n, n_q), (n,)]
    y : numpy.ndarray
        The training outputs (n, d_y)
    theta_y : numpy.ndarray
        Hyperparameters that parametrises the kernel on y (d_y,)

    Returns
    -------
    numpy.ndarray
        The distribution evaluated at y for each query point
        [(n_eval, n_q), (n_eval,)]
    """
    # (n_eval, n, d_y)
    y_dist = _dist(y_eval, y)

    # (n_eval, n, d_y)
    z = y_dist / (np.sqrt(2) * theta_y)

    # (n_eval, n, d_y)
    all_cdf = 0.5 * (1 + _erf(z))

    # (n_eval, n)
    each_cdf = np.prod(all_cdf, axis=-1)

    # (n_eval, n_q) or (n_eval,)
    cdf = np.dot(each_cdf, w_q_pdf)

    # Clip the distribution if required
    return np.clip(cdf, 0, 1) if clip else cdf
コード例 #10
0
def erf(z):
    return _erf(z.to(U.dimensionless_unscaled).value)