コード例 #1
0
ファイル: nonstationary.py プロジェクト: resharp/scBurstSim
def part_of_sum(k_on, k_off, mu, n, r, t):

    part_b1 = math.comb(n, r)
    logging.debug(part_b1)
    part_b2 = (-1) ** r * sc.poch(-k_off, r) * sc.poch(1 - k_off, n - r) * np.exp(-r * t)
    logging.debug(part_b2)
    part_b3 = 1 / sc.poch(1 + k_on + k_off, r)
    logging.debug(part_b3)
    part_b4 = 1 / sc.poch(2 - k_on - k_off, n - r)
    logging.debug(part_b4)
    part_b5 = sc.hyp1f1(k_off + r,
                        1 + k_on + k_off + r,
                        mu * np.exp(-t))
    logging.debug(part_b5)

    # NB: some terms in the Pochhammer's reappear in 1F1
    # and may cancel each other and this may avoid dividing by zero?
    part_b6 = sc.hyp1f1(1 - k_off + n - r,
                        2 - k_on - k_off + n - r,
                        -mu)
    logging.debug(part_b6)
    part_b = part_b1 * part_b2 * part_b3 * part_b4 * part_b5 * part_b6

    logging.debug(part_b)

    return part_b
コード例 #2
0
def hansen_coefficient(s, r, x):
    a = poch(3 / 2, r / 2 - 1) * poch(3 / 2 + s, r / 2 - 1) / poch(
        s + 1, r / 2 - 1)
    b = np.zeros_like(x)
    for j in xrange(int(r / 2)):
        b = b + (-1)**j * poch(1 / 2 + s + r / 2, j) * x**(
            2 * j) / factorial(j) / factorial(r / 2 - 1 - j) / poch(3 / 2, j)
    return a * b
コード例 #3
0
def generalized_assoc_laguerre(x, n, k):
    sum = np.linspace(0 + 0j, 0 + 0j, len(x))
    for i in range(n + 1):
        numerator = special.poch(-n, i) * special.poch(i + k + 1, n - i)
        denumerator = float(special.factorial(i))
        sum += numerator * (x**i) / denumerator

    return sum / special.factorial(n)
コード例 #4
0
ファイル: functions.py プロジェクト: ydiazn/almiky
 def keval(self, x, k, order):
     return (
         (-1) ** (order - k) *
         special.poch(-order, k) *
         special.poch(-x, k) *
         self.alpha ** (order - k) /
         math.factorial(k)
     )
コード例 #5
0
 def _hyp0f2(b1, b2, z, eps=1e-6, nmax=10):
     sum = 0
     #accumulate the sum from scratch, no convenient identities, but 5 terms seems good enough, use 10 to be safe
     #mpmath does this but don't want to introduce dependency just for one function
     for k in range(nmax):
         sum += 1 / (poch(b1, k) *
                     poch(b2, k)) * z**k / np.math.factorial(k)
     return sum
コード例 #6
0
ファイル: nonstationary.py プロジェクト: resharp/scBurstSim
def p_stationary(n, k_on, k_off, k_syn, k_d):

    k_on = k_on / k_d
    k_off = k_off / k_d
    k_syn = k_syn / k_d

    part1 = k_syn**n/fac(n)
    part2 = sc.poch(k_on, n)/sc.poch(k_on + k_off, n)
    part3 = sc.hyp1f1(k_on + n, k_on + k_off + n, - k_syn)

    ret_val = part1 * part2 * part3

    return ret_val
コード例 #7
0
ファイル: functions.py プロジェクト: ydiazn/almiky
 def eval(self, x, order):
     mp.dps = 25
     mp.pretty = True
     return (
         special.poch(1 - self.N, order) *
         hyp3f2(-order, -x, 1 + order, 1, 1 - self.N, 1)
     )
コード例 #8
0
def test_fht_exact(n):
    rng = np.random.RandomState(3491349965)

    # for a(r) a power law r^\gamma, the fast Hankel transform produces the
    # exact continuous Hankel transform if biased with q = \gamma

    mu = rng.uniform(0, 3)

    # convergence of HT: -1-mu < gamma < 1/2
    gamma = rng.uniform(-1 - mu, 1 / 2)

    r = np.logspace(-2, 2, n)
    a = r**gamma

    dln = np.log(r[1] / r[0])

    offset = fhtoffset(dln, mu, initial=0.0, bias=gamma)

    A = fht(a, dln, mu, offset=offset, bias=gamma)

    k = np.exp(offset) / r[::-1]

    # analytical result
    At = (2 / k)**gamma * poch((mu + 1 - gamma) / 2, gamma)

    assert_allclose(A, At)
コード例 #9
0
def laplace_b(s, j, n, alpha):
    """
    Calculates nth derivative with respect to a (alpha) of Laplace coefficient b_s^j(a).
    Uses recursion and scipy special functions. 
    
    Arguments
    ---------
    s : float 
        half-integer parameter of Laplace coefficient. 
    j : int 
        integer parameter of Laplace coefficient. 
    n : int 
        return nth derivative with respect to a of b_s^j(a)
    a : float
        semimajor axis ratio a1/a2 (alpha)
    """
    assert alpha >= 0 and alpha < 1, "alpha not in range [0,1): alpha={}".format(
        alpha)
    if j < 0:
        return laplace_b(s, -j, n, alpha)
    if n >= 2:
        return s * (laplace_b(s + 1, j - 1, n - 1, alpha) -
                    2 * alpha * laplace_b(s + 1, j, n - 1, alpha) +
                    laplace_b(s + 1, j + 1, n - 1, alpha) - 2 *
                    (n - 1) * laplace_b(s + 1, j, n - 2, alpha))
    if n == 1:
        return s * (laplace_b(s + 1, j - 1, 0, alpha) -
                    2 * alpha * laplace_b(s + 1, j, 0, alpha) +
                    laplace_b(s + 1, j + 1, 0, alpha))
    return 2 * poch(s, j) * alpha**j * hyp2f1(s, s + j, j + 1, alpha**
                                              2) / factorial(j)
コード例 #10
0
def torontonian_analytical(l, nbar):
    r"""Return the value of the Torontonian of the O matrices generated by gen_omats

    Args:
        l (int): number of modes
        nbar (float): mean photon number of the first mode (the only one not prepared in vacuum)

    Returns:
        float: Value of the torontonian of gen_omats(l,nbar)
    """
    if np.allclose(l, nbar, atol=1e-14, rtol=0.0):
        return 1.0
    beta = -(nbar / (l * (1 + nbar)))
    pref = factorial(l) / beta
    p1 = pref * l / poch(1 / beta, l + 2)
    p2 = pref * beta / poch(2 + 1 / beta, l)
    return (p1 + p2) * (-1)**l
コード例 #11
0
def check_sph_harm(l, m, theta, phi):
    print(sp.sph_harm(m, l, phi, theta))
    Clm = np.sqrt(
        (2 * l + 1.0) / 4 / np.pi * sp.poch(l + abs(m) + 1, -2 * abs(m)))
    [Pmlv, Pmlvdiff] = sp.lpmn(abs(m), l, np.cos(theta))
    ans = Clm * Pmlv[abs(m), l] * np.exp(1j * m * phi)
    if (m < 0):
        ans = (-1)**m * np.conjugate(ans)
    print(ans)
コード例 #12
0
def matel(x, i, j):
    n = min(i, j)
    m = max(i, j)
    factor = (-0.5)**((m-n)/2.) \
            *1./np.sqrt(special.poch(n+1,m-n)) \
            *x**(m-n) \
            *np.exp(-0.25*x**2) \
            *special.eval_genlaguerre(n, m-n, 0.5*x**2)
    return factor
コード例 #13
0
def spherical_harmonic_normalization(n, m, norm='full'):
    r"""The normalization factor for real valued spherical harmonics.

    .. math::

        N_n^m = \sqrt{\frac{2n+1}{4\pi}\frac{(n-m)!}{(n+m)!}}

    Parameters
    ----------
    n : int
        The spherical harmonic order.
    m : int
        The spherical harmonic degree.
    norm : 'full', 'semi', optional
        Normalization to use. Can be either fully normalzied on the sphere or
        semi-normalized.

    Returns
    -------
    norm : double
        The normalization factor.


    """
    if np.abs(m) > n:
        factor = 0.0
    else:
        if norm == 'full':
            z = n + m + 1
            factor = _spspecial.poch(z, -2 * m)
            factor *= (2 * n + 1) / (4 * np.pi)
            if int(m) != 0:
                factor *= 2
            factor = np.sqrt(factor)
        elif norm == 'semi':
            z = n + m + 1
            factor = _spspecial.poch(z, -2 * m)
            if int(m) != 0:
                factor *= 2
            factor = np.sqrt(factor)
        else:
            raise ValueError("Unknown normalization.")
    return factor
コード例 #14
0
ファイル: hypergeometric.py プロジェクト: tpudlik/hyp1f1
def paris_exponential_series(a, b, z, i, maxiters):
    """The exponentially small addition to the asymptotic expansion on the
    negative real axis.

    The argument `i` is the truncation index for the original series.

    This function does not reproduce all of the significant figures of Table 2
    in Paris (2013), suggesting a small implementation bug.

    Possibly fewer than all 5 terms should be summed for optimal peformance.
    (There are of course infinitely many terms, but the first 5 are the only
    ones for which the polynomial coefficients were included in the paper.)

    """
    M = 5
    theta = a - b
    x = -z
    if i < maxiters:
        # The optimal truncation term has been determined.
        v = a + i + theta
    else:
        # We don't know how many terms are optimal exactly (it's more than the
        # number of terms summed), so we'll use an approximation.
        v = x

    A = np.arange(M)
    A = poch(1 - a, A)*poch(b - a, A)/gamma(A + 1)

    first_sum = np.sum((-1)**np.arange(M) * A * x**(-np.arange(M)))
    second_sum = 0
    for idx in xrange(M):
        B = sum((-2)**k*poch(0.5, k)*A[idx-k]*np.polyval(PARIS_G[k,:],v - x - (idx-k))*6**(-2*k)
                for k in xrange(idx + 1))
        second_sum += (-1)**idx * B * x**(-idx)

    if np.real(a) and np.real(b) and (b < 0 or a < 0):
        c = np.exp(gammaln(b + 0j) - gammaln(a + 0j) - x + theta*np.log(x))
        c = np.real(c)
    else:
        c = np.exp(gammaln(b) - gammaln(a) - x + theta*np.log(x))

    return c*(np.cos(np.pi*theta)*first_sum
              - 2*np.sin(np.pi*theta)/np.sqrt(2*np.pi*x)*second_sum)
コード例 #15
0
    def test_gegenbauer(self):
        a = 5 * np.random.random() - 0.5
        if np.any(a == 0):
            a = -0.2
        Ca0 = orth.gegenbauer(0, a)
        Ca1 = orth.gegenbauer(1, a)
        Ca2 = orth.gegenbauer(2, a)
        Ca3 = orth.gegenbauer(3, a)
        Ca4 = orth.gegenbauer(4, a)
        Ca5 = orth.gegenbauer(5, a)

        assert_array_almost_equal(Ca0.c, array([1]), 13)
        assert_array_almost_equal(Ca1.c, array([2 * a, 0]), 13)
        assert_array_almost_equal(Ca2.c, array([2 * a * (a + 1), 0, -a]), 13)
        assert_array_almost_equal(
            Ca3.c,
            array([4 * sc.poch(a, 3), 0, -6 * a * (a + 1), 0]) / 3.0, 11)
        assert_array_almost_equal(
            Ca4.c,
            array([
                4 * sc.poch(a, 4), 0, -12 * sc.poch(a, 3), 0, 3 * a * (a + 1)
            ]) / 6.0, 11)
        assert_array_almost_equal(
            Ca5.c,
            array([
                4 * sc.poch(a, 5), 0, -20 * sc.poch(a, 4), 0,
                15 * sc.poch(a, 3), 0
            ]) / 15.0, 11)
コード例 #16
0
def solution_me(k: int, alpha: float, m: int = 1) -> float:
    """
        Functions that return value of probability that was calculated analytical using Master equation and stand for
        if alpha!=0

        P(k) = bunch of gamma functions...

        note that this equation will broke at alpha -> 0, thus if alpha == 0 :
        m^(k-m) / (m+1)^(k-m+1)

        :param k: vertex degree
        :param alpha: alpha value
        :param m: at this moment always equal 1, originally this is yet another generalization of BA graph
        :return: probability of given vertex degree
    """
    if alpha > 0.001:
        m = 1
        ret = 2 / (2 * m + 2 - alpha * m)
        ret *= poch(2 * m / alpha - m, 1 + 2 / alpha)
        ret /= poch(2 * m / alpha - 2 * m + k, 1 + 2 / alpha)
    else:
        m = 1
        ret = m**(k - m) / (m + 1)**(k - m + 1)
    return ret
コード例 #17
0
def threeFtwo(a, b):
    """
    Hypergerometric 3_F_2([a1,a2,a3],[b1,b2],1)
    
    Used in calcluations of KaulaF function
    
    Arguments
    ---------
    a : list of ints
    
    b :  list of ints
    
    Returns
    -------
    float
    """
    a1, a2, a3 = a
    b1, b2 = b
    kmax = min(1 - a1, 1 - a2, 1 - a3)
    tot = 0
    for k in range(0, kmax):
        tot += poch(a1, k) * poch(a2, k) * poch(a3, k) / poch(b1, k) / poch(
            b2, k) / factorial(k)
    return tot
コード例 #18
0
def get_vecsph(x, y, z, l, m):
    m_abs = abs(
        m
    )  #calculate everything with |m|, then at the end conjugate and multiply (-1)^m if needed
    A1lm = np.zeros(3, dtype=complex)
    A2lm = np.zeros(3, dtype=complex)
    A3lm = np.zeros(3, dtype=complex)
    if m_abs > l:
        print("m>l encountered in get_vecsph")
        return A1lm, A2lm, A3lm

    r, theta, phi, rhat, thehat, phihat = Cart_to_sphere(x, y, z)
    costheta = np.cos(theta)
    [Pmlv, Pmlvdiff] = sp.lpmn(
        m_abs, l, costheta
    )  #assembling spherical harmonics by hand since we also need their derivatives
    Clm = np.sqrt(
        (2 * l + 1.0) / 4 / np.pi *
        sp.poch(l + m_abs + 1, -2 * m_abs))  #prefactor for spherical harmonics
    phiphase = np.exp(1j * m_abs * phi)
    #A3lm = rhat*sp.sph_harm(m,l,phi,theta) #scipy harmonics have azimuthal angle as first angle argument
    A3lm = rhat * Clm * Pmlv[m_abs, l] * phiphase

    if theta == 0.0 or costheta == -1.0:  #special case, avoid 1/sin(theta) nan, see Kristensson appendix D
        if m_abs == 1:
            prefact = np.sqrt((2 * l + 1.0) / 16 / np.pi)
            A1lm = -prefact * np.array([1j, -1.0, 0.0])
            A2lm = -prefact * np.array([1.0, 1j, 0.0])
            if costheta == -1.0:
                A1lm = (-1)**l * A1lm
                A2lm = (-1)**l * A2lm
        #otherwise nothing is done to A1lm, A2lm, and we get back 0s
    elif l > 0:  #A100 A200 are all 0
        pdvYphi_over_sine = 1j * m_abs * Clm * Pmlv[
            m_abs, l] * phiphase / np.sin(theta)
        pdvYthe = -np.sin(theta) * Clm * phiphase
        pdvYthe *= Pmlvdiff[m_abs, l]
        A1lm = (thehat * pdvYphi_over_sine - phihat * pdvYthe) / np.sqrt(
            l * (l + 1.0))
        A2lm = (thehat * pdvYthe + phihat * pdvYphi_over_sine) / np.sqrt(
            l * (l + 1.0))

    if m < 0:
        A1lm = (-1)**m * np.conjugate(A1lm)
        A2lm = (-1)**m * np.conjugate(A2lm)
        A3lm = (-1)**m * np.conjugate(A3lm)
    return A1lm, A2lm, A3lm
コード例 #19
0
ファイル: kernels.py プロジェクト: edrynkin/empirical-io
def hansen_coefficient(s, r, x):
    a = poch(3/2, r/2-1)*poch(3/2+s, r/2-1)/poch(s+1, r/2-1)
    b = np.zeros_like(x)
    for j in xrange(int(r/2)):
        b = b + (-1)**j*poch(1/2+s+r/2, j)*x**(2*j)/factorial(j)/factorial(r/2-1-j)/poch(3/2, j)
    return a*b
コード例 #20
0
ファイル: test_data.py プロジェクト: Asgardian8740/Django
def poch_(z, m):
    return 1.0 / poch(z, m)
コード例 #21
0
ファイル: test_data.py プロジェクト: Asgardian8740/Django
def poch_minus(z, m):
    return 1.0 / poch(z, -m)
コード例 #22
0
ファイル: test_data.py プロジェクト: LifeIsHealthy/scipy
def poch_(z, m):
    return 1.0 / poch(z, m)
コード例 #23
0
ファイル: test_data.py プロジェクト: LifeIsHealthy/scipy
def poch_minus(z, m):
    return 1.0 / poch(z, -m)
コード例 #24
0
 def c_k_partial( k, immi_rate, birth_rate, death_rate, N, K, comp_overlap ):
     value = 1.0
     if k == 0.0:
         return value
     else:
         """ previous calc.
         for i in np.arange(1,k+1):
             value = value*( ( immi_rate + birth_rate*(i-1))/( i*(death_rate + (birth_rate-death_rate)*(i*(1-comp_overlap)+comp_overlap*N)/K) ) )
         """
         c = ( death_rate*K/((birth_rate-death_rate)) + comp_overlap*N ) / ( 1-comp_overlap )
         value = ( birth_rate*K / ( (birth_rate - death_rate)*(1-comp_overlap) ) ) ** k * poch( immi_rate/birth_rate, k ) / ( factorial(k)*poch( c + 1, k ) )
         return value
コード例 #25
0
 def R(i, immi_rate, birth_rate, death_rate, N, K, comp_overlap):
     if i == 1:
         return 1.0
     else:
         return ( birth_rate*K )**(i-1) * poch( immi_rate/birth_rate + 1 , i - 1 ) / ( fact(i-1)*poch(death_rate*K + comp_overlap*N + 1, i-1) )
コード例 #26
0
def negative_binom(minus_q, l):
    # scipy.special.binom returns a NaN when called at a
    # negative integer so I use this alternate formulation
    # when the argument is potenially a negative integer
    return (-1)**l * poch(-1 * minus_q, l) / factorial(l)
コード例 #27
0
def falling_factorial(n, p):
    return 1.0 / spspec.poch(n + 1, -p)
コード例 #28
0
def arcsin_taylor_factor(p):
    """Returns the (1+2p)th Taylor expansion factor of arcsin(x) around x=0, which is a_p = (1/2)_p / (1+2p)*p!"""

    return poch(1 / 2, p) / ((1 + 2 * p) * math.factorial(p))
コード例 #29
0
def pdf_smalln_better_unnormalized(x, stoch, cap, delta=1.):#this creates problems as it divides ~0 by ~0 or something like that
    P1 = 1.;
    return P1*(1-stoch)/(1-2*stoch)/x*poch(1+cap*(1+delta)/(1-2*stoch),x-1)/poch(1+(1-stoch+cap*delta/2.)/(1-stoch),x-1)*((1-2*stoch)/(1-stoch))**x
コード例 #30
0
 def pdf(a, b, n, k):
     return sp.poch(n, k) * sp.poch(a, n) * sp.poch(b, k) / (
         math.factorial(k) * sp.poch(a + b, n) * sp.poch(n + a + b, k))
コード例 #31
0
ファイル: nakagami.py プロジェクト: mudkip201/distributions
 def kurtosis(m, omega):
     return (m * (4 * m + 1) - 2 * (2 * m + 1) * sp.poch(m, 1 / 2)**2) / (
         m - sp.poch(m, 1 / 2)**2)**2 - 3
コード例 #32
0
ファイル: nakagami.py プロジェクト: mudkip201/distributions
 def skewness(m, omega):
     return (sp.poch(m, 1 / 2) * (1 / 2 - 2 *
                                  (m - sp.poch(m, 1 / 2)**2))) / math.pow(
                                      m - sp.poch(m, 1 / 2)**2, 3 / 2)
コード例 #33
0
ファイル: test_hyp2f1.py プロジェクト: tianluyuan/scratch
def poch_sum_ln_15_4_1(a,b,c,z):
    m = -a
    n = np.arange(m+1)
    return np.sum(poch(-m,n)*z**n*np.exp(pochln(b,n)-gammaln(n+1))/poch(c,n))
コード例 #34
0
ファイル: test_hyp2f1.py プロジェクト: tianluyuan/scratch
def poch_sum_15_4_1(a,b,c,z):
    m = -a
    n = np.arange(m+1)
    return np.sum(poch(-m,n)*poch(b,n)*z**n/(poch(c,n)*gamma(n+1)))