コード例 #1
0
def osciallating_param_costs():

    U1, U2, U1_, U2_ = [unitary_group.rvs(4).reshape(2,2,2,2) for _ in range(4)]
    RE = RightEnvironment()
    params = np.random.rand(6)
    C = CircuitSolver()
    for i in range(len(params)):
        Ms = []
        M_s = []
        for p in np.linspace(0,np.pi*2, 200):
            params[i] = p
            M = C.M(params)
            M_ = RE.circuit(U1, U2, U1_, U2_, M)

            Ms.append(M.reshape(4,))
            M_s.append(M_.reshape(4,))
            

        scores = np.linalg.norm(np.array(Ms) - np.array(M_s), axis = 1)
        plt.plot(scores, label = f"{i}")

        plt.legend()
        plt.show()
コード例 #2
0
def circuit_ansatz(params, wires):
    """Circuit ansatz containing all the parametrized gates"""
    qml.QubitStateVector(unitary_group.rvs(2**4, random_state=0)[0],
                         wires=wires)
    qml.RX(params[0], wires=wires[0])
    qml.RY(params[1], wires=wires[1])
    qml.RX(params[2], wires=wires[2]).inv()
    qml.RZ(params[0], wires=wires[3])
    qml.CRX(params[3], wires=[wires[3], wires[0]])
    qml.PhaseShift(params[4], wires=wires[2])
    qml.CRY(params[5], wires=[wires[2], wires[1]])
    qml.CRZ(params[5], wires=[wires[0], wires[3]]).inv()
    qml.PhaseShift(params[6], wires=wires[0]).inv()
    qml.Rot(params[6], params[7], params[8], wires=wires[0])
    # #     qml.Rot(params[8], params[8], params[9], wires=wires[1]).inv()
    qml.MultiRZ(params[11], wires=[wires[0], wires[1]])
    # #     qml.PauliRot(params[12], "XXYZ", wires=[wires[0], wires[1], wires[2], wires[3]])
    qml.CPhase(params[12], wires=[wires[3], wires[2]])
    qml.IsingXX(params[13], wires=[wires[1], wires[0]])
    qml.IsingXY(params[14], wires=[wires[3], wires[2]])
    qml.IsingYY(params[14], wires=[wires[3], wires[2]])
    qml.IsingZZ(params[14], wires=[wires[2], wires[1]])
    qml.U1(params[15], wires=wires[0])
    qml.U2(params[16], params[17], wires=wires[0])
    qml.U3(params[18], params[19], params[20], wires=wires[1])
    # #     qml.CRot(params[21], params[22], params[23], wires=[wires[1], wires[2]]).inv()  # expected tofail
    qml.SingleExcitation(params[24], wires=[wires[2], wires[0]])
    qml.DoubleExcitation(params[25],
                         wires=[wires[2], wires[0], wires[1], wires[3]])
    qml.SingleExcitationPlus(params[26], wires=[wires[0], wires[2]])
    qml.SingleExcitationMinus(params[27], wires=[wires[0], wires[2]])
    qml.DoubleExcitationPlus(params[27],
                             wires=[wires[2], wires[0], wires[1], wires[3]])
    qml.DoubleExcitationMinus(params[27],
                              wires=[wires[2], wires[0], wires[1], wires[3]])
    qml.RX(params[28], wires=wires[0])
    qml.RX(params[29], wires=wires[1])
コード例 #3
0
ファイル: test_unitary.py プロジェクト: qclib/qclib
    def test_unitary_qsd_4qubits(self):
        u = unitary_group.rvs(16)
        gate = unitary(u, 'qsd')
        state = get_state(gate)
        self.assertTrue(np.allclose(u[:, 0], state))

        circuit = qiskit.QuantumCircuit(4)
        circuit.x(0)
        circuit.append(gate, circuit.qubits)
        state = get_state(circuit)
        self.assertTrue(np.allclose(u[:, 1], state))

        circuit = qiskit.QuantumCircuit(4)
        circuit.x(1)
        circuit.append(gate, circuit.qubits)
        state = get_state(circuit)
        self.assertTrue(np.allclose(u[:, 2], state))

        circuit = qiskit.QuantumCircuit(4)

        circuit.x([0, 1, 2, 3])
        circuit.append(gate, circuit.qubits)
        state = get_state(circuit)
        self.assertTrue(np.allclose(u[:, 15], state))
コード例 #4
0
ファイル: test_backends.py プロジェクト: brianzi/quantumsim
def random_unitary_matrix(dim, seed):
    rng = np.random.RandomState(seed)
    return unitary_group.rvs(dim, random_state=rng)
コード例 #5
0
 def random_unitary(self):
     return circuit.Unitary(1, unitary_group.rvs(2))
コード例 #6
0
    def __init__(self,
                 nbqubitinput,
                 arity,
                 length,
                 name,
                 learningrate=0,
                 momentum=0,
                 start=0):
        super().__init__(nbqubitinput, name)
        init = tf.orthogonal_initializer
        self.arity = arity
        size = 1 << arity
        #real = tf.get_variable(name+"w",[size,size],initializer=init)
        #real= tf.multiply(1.0/tf.sqrt(2.0),tf.eye(size, dtype="float32"))
        #imag =  tf.multiply(1.0/tf.sqrt(2.0),tf.eye(size, dtype="float32"))
        #param=tf.complex(real,imag)
        param = tf.convert_to_tensor(unitary_group.rvs(size),
                                     dtype='complex64')
        paramdagger = tf.transpose(param, conjugate=True)
        for y in range(start, length):
            if (y % 2 == 0):
                for x in range(0, nbqubitinput // arity):
                    with tf.variable_scope(name + "row" + str(y) + "gate" +
                                           str(x)):
                        gate = genericQGate.genericQGate(
                            param, nbqubitinput, arity, x * arity,
                            learningrate, momentum)
                        self.gatelist.append(gate)

                leftover = nbqubitinput % arity
                pos = nbqubitinput - leftover
                if (pos < nbqubitinput):
                    with tf.variable_scope(name + "row" + str(y) + "gate" +
                                           str(pos)):
                        size = 1 << leftover
                        real = tf.get_variable("v", [size, size],
                                               initializer=init)
                        #real = tf.eye(size, dtype="float32")
                        imag = tf.zeros_like(real)
                        param_l = tf.complex(real, imag)
                        gate = genericQGate.genericQGate(
                            param_l, nbqubitinput, leftover, pos, learningrate,
                            momentum)
                        self.gatelist.append(gate)
            else:
                with tf.variable_scope(name + "row" + str(y) + "gate0"):
                    real = [[1 / tf.sqrt(2.0), 1 / tf.sqrt(2.0)],
                            [1 / tf.sqrt(2.0), -1 / tf.sqrt(2.0)]]
                    imag = [[0.0, 0.0], [0.0, 0.0]]
                    hadamard = tf.complex(real, imag)
                    gate = genericQGate.genericQGate(hadamard, nbqubitinput, 1,
                                                     0, learningrate, momentum)
                    self.gatelist.append(gate)

                for x in range(0, (nbqubitinput - 1) // arity):
                    with tf.variable_scope(name + "row" + str(y) + "gate" +
                                           str(x + 1)):
                        gate = genericQGate.genericQGate(
                            paramdagger, nbqubitinput, arity, 1 + x * arity,
                            learningrate, momentum)
                        self.gatelist.append(gate)

                leftover = (nbqubitinput - 1) % arity
                pos = nbqubitinput - leftover
                if (pos < nbqubitinput):
                    with tf.variable_scope(name + "row" + str(y) + "gate" +
                                           str(pos)):
                        size = 1 << leftover
                        real = tf.get_variable("v", [size, size],
                                               initializer=init)
                        #real = tf.eye(size, dtype="float32")
                        imag = tf.zeros_like(real)
                        param_l = tf.complex(real, imag)
                        gate = genericQGate.genericQGate(
                            param_l, nbqubitinput, leftover, pos, learningrate,
                            momentum)
                        self.gatelist.append(gate)
コード例 #7
0
ファイル: _unitary_test.py プロジェクト: Takishima/ProjectQ
 def create_random_unitary(n):
     return unitary_group.rvs(2**n)
コード例 #8
0
 def test_compare_unitary(self):
     # Given
     U1 = unitary_group.rvs(4)
     U2 = unitary_group.rvs(4)
     # When/Then
     self.assertFalse(compare_unitary(U1, U2))
コード例 #9
0
ファイル: simple_qfast.py プロジェクト: BQSKit/bqskit
"""This script is contains a simple use case of the QFAST synthesis method."""
from __future__ import annotations

import logging

from scipy.stats import unitary_group

from bqskit.compiler import CompilationTask
from bqskit.compiler import Compiler
from bqskit.compiler.passes.synthesis import QFASTDecompositionPass
from bqskit.ir import Circuit

if __name__ == '__main__':
    # Enable logging
    logging.getLogger('bqskit').setLevel(logging.DEBUG)

    # Let's create a random 3-qubit unitary to synthesize and add it to a
    # circuit.
    circuit = Circuit.from_unitary(unitary_group.rvs(8))

    # We will now define the CompilationTask we want to run.
    task = CompilationTask(circuit, [QFASTDecompositionPass()])

    # Finally let's create create the compiler and execute the CompilationTask.
    with Compiler() as compiler:
        compiled_circuit = compiler.compile(task)
        for op in compiled_circuit:
            print(op)
コード例 #10
0
    return res

def dispatch(nb_meas, probas, rule='rdm'):
    assert np.allclose(np.sum(probas), 1.)
    if rule == 'rdm':
        samples = np.random.choice(len(probas), nb_meas, p = probas)
        meas = [np.sum(samples == i) for i in range(len(probas))]
    else:
        meas = [int(p* nb_meas) for p in probas]
    return np.array(meas)
# =========================================================================== #
# Testing the different measurement schemes
# =========================================================================== #
Target = ut.HDM
nb_meas = 1000
U = unitary_group.rvs(2, 1000)
u = [qt.Qobj(U_el, dims = [[2],[2]]) for U_el in U]
real_fid = np.array([ut.fid_perfect(unit, Target) for unit in u])


# Standard scheme
sch1 = produce_schemes_1q('strat1')(Target)
sch1_fid_perfect = np.array([measure_fid(unit, *sch1) for unit in u])
sch1_fid_limited = np.array([measure_fid(unit, *sch1, nb_meas = nb_meas) for unit in u])

sch1_smart = produce_schemes_1q('strat1_smart')(Target)
sch1_smart_perfect = np.array([measure_fid(unit, *sch1_smart) for unit in u])
sch1_smart_limited = np.array([measure_fid(unit, *sch1_smart, nb_meas = nb_meas) for unit in u])

sch1_diag = produce_schemes_1q('diag')(Target)
sch1_diag_perfect = np.array([measure_fid(unit, *sch1_diag) for unit in u])
コード例 #11
0
        description='Configuration for decomposition', add_help=True)
    parser.add_argument('--num_qubits',
                        '-n',
                        type=int,
                        default=2,
                        help="Number of qubits")
    parser.add_argument('--qasm_output',
                        '-q',
                        type=store_true,
                        help="Conversion to QASM format")
    args = parser.parse_args()
    print('Current directory: ', os.getcwd())

    num_bits = args.num_qubits
    print("Initializing random unitary U ..., num_qubits: ", num_bits)
    init_unitary_mat = unitary_group.rvs(2**num_bits)
    emb = CktEmbedder(num_bits, num_bits)
    file_prefix = "decomposition_demo"
    t = Tree(True, file_prefix, emb, init_unitary_mat, verbose=False)
    t.close_files()

    # The above code automatically creates an expansion of $U$
    # into DIAG and MP_Y lines. Next we print the Picture file that was created.

    file = './qubiter/quantum_CSD_compiler/' + file_prefix + "_2_ZLpic.txt"
    df = pd.read_csv(file, delim_whitespace=True, header=None)

    style = "exact"
    xer = MultiplexorExpander(file_prefix, num_bits, style, verbose=False)
    xer = DiagUnitaryExpander(file_prefix + "_X1", num_bits, style)
    xer = MultiplexorExpander(file_prefix + "_X2",
コード例 #12
0
ファイル: toffoli_synthesis.py プロジェクト: BQSKit/qfactor
# The next two lines start qfactor's logger.
import logging
logging.getLogger("qfactor").setLevel(logging.INFO)

# We will optimize towards the toffoli unitary.
toffoli = np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0],
                    [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
                    [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],
                    [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]])

# Start with the circuit structure
# and an initial guess for the gate's unitaries.
# Here we use randomly generated unitaries for initial guess.
circuit = [
    Gate(unitary_group.rvs(4), (1, 2)),
    Gate(unitary_group.rvs(4), (0, 2)),
    Gate(unitary_group.rvs(4), (1, 2)),
    Gate(unitary_group.rvs(4), (0, 2)),
    Gate(unitary_group.rvs(4), (0, 1))
]

# Note: the Gate object also has an optional boolean parameter "fixed"
# If "fixed" is set to true, that gate's unitary will not change.

# Call the optimize function
ans = optimize(
    circuit,
    toffoli,  # <--- These are the only required args
    diff_tol_a=1e-12,  # Stopping criteria for distance change
    diff_tol_r=1e-6,  # Relative criteria for distance change
コード例 #13
0
    """
    ket_input = []
    ket_output = []
    for i in range(m):
        ket_input.append(jnp.array(rand_ket(d, seed=300).full()))
        # Output data -- action of unitary on a ket states
        ket_output.append(jnp.dot(tar_unitr, ket_input[i]))

    return (ket_input, ket_output)


m = 100  # number of training data points
N = 8  # Dimension of the unitary to be learnt
train_len = int(m * 0.8)
# tar_unitr gives a different unitary each time
tar_unitr = jnp.asarray(unitary_group.rvs(N))
ket_input, ket_output = make_dataset(m, N)

# ## Cost Function
#
# We use the same cost function as the authors
# [Seth Lloyd and Reevu Maity, 2020](https://arxiv.org/pdf/1901.03431.pdf)
# define
#
# $\begin{equation} \label{err_ps}
# E = 1 - (\frac{1}{M})\sum_{i} \langle \psi_{i}|U^{\dagger} U(\vec{\theta}, \vec{\phi}, \vec{\omega})|\psi_{i}\rangle
#  \end{equation}$,
#
# where $ |\psi_{i} \rangle$ is the training (or testing)
# data points -- in this case, kets, $U$ and
# $U(\vec{\theta}, \vec{\phi}, \vec{\omega})$ are the target and
コード例 #14
0
        
        scores = []
        for p in x:
            scores.append(np.linalg.norm(p * M - M_))

        coefs = Polynomial.fit(x[:10],scores[:10],deg = 2, domain = (1,0.9))
        new_vals = [coefs(a) for a in x]
        plt.plot(x, scores, label = "Exact")
        plt.plot(x, new_vals, label = "Poly Fit")
        plt.legend()
        plt.show()  

if __name__ == "__main__":
    ################
    # Set up a random environment calculation
    U1, U2, U1_, U2_ = [unitary_group.rvs(4).reshape(2,2,2,2) for _ in range(4)]
    RE = RightEnvironment()
    R = Represent()
    R.U1 = U1
    R.U2 = U2
    R.U1_ = U1_
    R.U2_ = U2_

    ###############
    # Demonstrate the sinusoidal cost Function
    params = np.random.rand(6)
    C = CircuitSolver()
    params = [1] + list(np.random.rand(6))
    CostFuncs = []
    x = np.linspace(0,2*np.pi, 200)
コード例 #15
0
ファイル: Operator_test.py プロジェクト: polyzer/qbyq
def test_hermitian():
    u = unitary_group.rvs(3)
    return Operator.is_hermitian(u)
コード例 #16
0
ファイル: Operator_test.py プロジェクト: polyzer/qbyq
def test_unitarity():
    u = unitary_group.rvs(3)
    return Operator.is_unitary(u)
コード例 #17
0
ファイル: setup_model.py プロジェクト: HugoStrand/cthyb
        num_orbitals=2,
        num_spins=2,
        nw=400,
        ntau=801,
    )

    up, do = '0', '1'
    p.spin_names = [up, do]
    p.orb_names = range(p.num_orbitals)

    # -- Unitary transform

    if False:
        from scipy.stats import unitary_group, ortho_group
        np.random.seed(seed=233423)  # -- Reproducible "randomness"
        p.T = unitary_group.rvs(4)  # General complex unitary transf
        #p.T = np.kron(ortho_group.rvs(2), np.eye(2)) # orbital only rotation

    # use parametrized "weak" realvalued 4x4 transform
    p.T = unitary_transf_4x4(t_vec=[0.3, 0.3, 0.3, 0.0, 0.0, 0.0])
    #p.T = unitary_transf_4x4(t_vec=[0.25*np.pi, 0.0, 0.0, 0.0, 0.0, 0.0])
    #p.T = np.eye(4)
    p.T = np.matrix(p.T)
    print p.T

    # -- Different types of operator sets

    p.op_imp = [c('0', 0), c('0', 1), c('0', 2), c('0', 3)]
    p.op_full = p.op_imp + [c('1', 0), c('1', 1), c('1', 2), c('1', 3)]

    p.spin_block_ops = [c('0', 0), c('1', 0), c('0', 1), c('1', 1)]
コード例 #18
0
    def test_passive_channel(self, M, setup_eng, tol):
        """check that passive channel is consistent with unitary methods"""
        U = unitary_group.rvs(M)

        loss_in = np.random.random(M)
        loss_out = np.random.random(M)

        T = (np.sqrt(loss_in) * U) * np.sqrt(loss_out[np.newaxis].T)

        eng, prog = setup_eng(M)
        with prog.context as q:
            for i in range(M):
                ops.Sgate(1) | q[i]
                ops.Dgate(A) | q[i]
            ops.PassiveChannel(T) | q

        state = eng.run(prog).state
        cov1 = state.cov()
        mu1 = state.means()

        eng, prog = setup_eng(M)
        with prog.context as q:
            for i in range(M):
                ops.Sgate(1) | q[i]
                ops.Dgate(A) | q[i]
                ops.LossChannel(loss_in[i]) | q[i]
            ops.Interferometer(U) | q
            for i in range(M):
                ops.LossChannel(loss_out[i]) | q[i]

        state = eng.run(prog).state
        cov2 = state.cov()
        mu2 = state.means()

        assert np.allclose(cov1, cov2, atol=tol, rtol=0)
        assert np.allclose(mu1, mu2, atol=tol, rtol=0)

        u, s, v = np.linalg.svd(T)

        eng, prog = setup_eng(M)
        with prog.context as q:
            for i in range(M):
                ops.Sgate(1) | q[i]
                ops.Dgate(A) | q[i]
            ops.Interferometer(v) | q
            for i in range(M):
                ops.LossChannel(s[i]**2) | q[i]
            ops.Interferometer(u) | q

        state = eng.run(prog).state
        cov3 = state.cov()
        mu3 = state.means()

        assert np.allclose(cov1, cov3, atol=tol, rtol=0)
        assert np.allclose(mu1, mu3, atol=tol, rtol=0)

        T1 = u * s
        eng, prog = setup_eng(M)
        with prog.context as q:
            for i in range(M):
                ops.Sgate(1) | q[i]
                ops.Dgate(A) | q[i]
            ops.PassiveChannel(v) | q
            ops.PassiveChannel(T1) | q

        state = eng.run(prog).state
        cov4 = state.cov()
        mu4 = state.means()

        assert np.allclose(cov1, cov4, atol=tol, rtol=0)
        assert np.allclose(mu1, mu4, atol=tol, rtol=0)
コード例 #19
0
def main():

    #     input_dict = input_reader('input.txt')
    #     n_qubits = input_dict['n_qubits']
    #     max_ebits = ceil(n_qubits/2)
    #     n_instances = input_dict['n_instances']
    #     method = input_dict['method']

    n_qubits = int(input("Enter the number of qubits: "))
    max_ebits = ceil(n_qubits / 2)
    n_instances = int(
        input("Enter the number of random unitaries to average over: "))
    method = str(
        input(
            "Enter the name of an optimization method. The supported ones are: \n\tNelder-Mead \n\tBFGS \n\tL-BFGS-B \n\tPowell \n\tSLSQP \n\tTNC \n Please choose one"
        ))

    unitaries = [unitary_group.rvs(2**n_qubits) for i in range(n_instances)]

    fun_values = [[0]] * max_ebits
    overlaps = [[0]] * max_ebits
    entropies = [[0]] * max_ebits

    start_time = time.time()

    for p in range(n_instances):
        print('Iteration', p + 1)
        initial_state_vec = np.array([1] + [0] * (2**n_qubits - 1))

        for ebits in range(1, max_ebits + 1):

            print('\t Ebits in MPS:', ebits)
            local_time = time.time()
            state_tensor_network = []
            for n in range(n_qubits - ebits):
                target_qubits = [(i + n) for i in range(ebits + 1)]
                state_tensor_network = state_tensor_network + hea_ansatz_eff(
                    n_qubits, ebits, target_qubits)
            for i in range(len(state_tensor_network)):
                state_tensor_network[i]['block_number'] = i
            n_pars = len(
                extract_parameters_from_tensor_network(state_tensor_network))
            update_tensor_network(state_tensor_network,
                                  [0 for i in range(n_pars)])

            result = approximate_mps_qiskit(n_qubits, initial_state_vec,
                                            state_tensor_network, unitaries[p],
                                            method)

            l = len(result[0])
            k = ebits - 1

            fun_values[k] = np.concatenate(
                (fun_values[k],
                 [fun_values[k][-1]] * (l - len(fun_values[k]))))
            new_fun_values = np.concatenate(
                (result[0], [result[0][-1]] * (len(fun_values[k]) - l)))
            fun_values[k] = np.array(fun_values[k]) + np.array(new_fun_values)

            overlaps[k] = np.concatenate(
                (overlaps[k], [overlaps[k][-1]] * (l - len(overlaps[k]))))
            new_overlaps = np.concatenate(
                (result[1], [result[1][-1]] * (len(overlaps[k]) - l)))
            overlaps[k] = np.array(overlaps[k]) + np.array(new_overlaps)

            entropies[k] = np.concatenate(
                (entropies[k], [entropies[k][-1]] * (l - len(entropies[k]))))
            new_entropies = np.concatenate(
                (result[2], [result[2][-1]] * (len(entropies[k]) - l)))
            entropies[k] = np.array(entropies[k]) + np.array(new_entropies)

            initial_state_vec = result[4]
            print('\t\t Completed in', time.time() - local_time)

    verts = [0]
    for line in fun_values:
        verts.append(verts[-1] + len(line))
    # verts.pop(-1)

    fun_values_flat = np.array([])
    for line in fun_values:
        fun_values_flat = np.concatenate((fun_values_flat, line))
    fun_values_flat = fun_values_flat / n_instances

    overlaps_flat = np.array([])
    for line in overlaps:
        overlaps_flat = np.concatenate((overlaps_flat, line))
    overlaps_flat = overlaps_flat / n_instances

    entropies_flat = np.array([])
    for line in entropies:
        entropies_flat = np.concatenate((entropies_flat, line))
    entropies_flat = entropies_flat / n_instances

    print('Completed in', time.time() - start_time)

    # write the data
    file = open('fun_values_flat.txt', 'w')
    for fun_value in fun_values_flat:
        file.write(str(fun_value) + '\n')
    file.close()
    file = open('overlaps_flat.txt', 'w')
    for overlap in overlaps_flat:
        file.write(str(overlap) + '\n')
    file.close()
    file = open('entropies_flat.txt', 'w')
    for entropy in entropies_flat:
        file.write(str(entropy) + '\n')
    file.close()

    # plot
    figsize = (10, 8)
    tickssize = 12
    fontsize = 16
    linewidth = 1

    x_axis = list(range(len(fun_values_flat)))
    x_ticks = x_axis
    s = 0
    k = len(fun_values_flat)

    fig = plt.figure(figsize=figsize)
    gs = gridspec.GridSpec(3, 1, height_ratios=[1, 1, 1])

    ax0 = plt.subplot(gs[0])  #
    ax0.plot(x_axis[s:k],
             1 - fun_values_flat[s:k],
             color='tab:red',
             linewidth=2.5)
    ax0.hlines(y=0, xmin=s, xmax=k, colors='black', linestyles='solid')
    ax0.hlines(y=1, xmin=s, xmax=k, colors='green', linestyles='dashed')
    for v in verts:
        ax0.vlines(x=v, ymin=0, ymax=1.1, linestyles='solid', linewidth=1)
    ax0.set_ylabel('Function value', fontsize=fontsize)
    ax0.set_xlim(s, k)
    ax0.set_ylim(0, 1.1)
    ax0.grid()
    plt.xticks(fontsize=0)
    plt.yticks(fontsize=tickssize)

    ax1 = plt.subplot(gs[1])
    plt.plot(x_axis[s:k], overlaps_flat[s:k], color='tab:blue', linewidth=2.5)
    ax1.hlines(y=0, xmin=s, xmax=k, colors='black', linestyles='solid')
    ax1.hlines(y=1, xmin=s, xmax=k, colors='green', linestyles='dashed')
    for v in verts:
        ax1.vlines(x=v, ymin=0, ymax=1.1, linestyles='solid', linewidth=1)
    ax1.set_ylabel('Overlap', fontsize=fontsize)
    ax1.hlines(y=0,
               xmin=x_axis[s:][0],
               xmax=x_axis[s:][-1],
               colors='black',
               linestyles='solid')
    ax1.hlines(y=1,
               xmin=x_axis[s:][0],
               xmax=x_axis[s:][-1],
               colors='green',
               linestyles='dashed')
    ax1.set_xlim(s, k)
    ax1.set_ylim(0, 1.1)
    ax1.grid()
    plt.xticks(fontsize=0)
    plt.yticks(fontsize=tickssize)

    ax2 = plt.subplot(gs[2], sharex=ax1)
    plt.setp(ax1.get_xticklabels(), visible=False)
    ax2.plot(x_axis[s:k], entropies_flat[s:k], color='purple', linewidth=2.5)
    ax2.hlines(y=0, xmin=s, xmax=k, colors='black', linestyles='solid')
    for v in verts:
        ax2.vlines(x=v,
                   ymin=0,
                   ymax=max_ebits + 0.4,
                   linestyles='solid',
                   linewidth=1)
    ax2.set_xlabel('Iterations', fontsize=fontsize)
    ax2.set_ylabel('Entanglement', fontsize=fontsize)
    ax2.hlines(y=0,
               xmin=x_axis[s:][0],
               xmax=x_axis[s:][-1],
               colors='black',
               linestyles='solid')
    for r in range(1, max_ebits + 1):
        ax2.hlines(y=r,
                   xmin=verts[r - 1],
                   xmax=verts[r],
                   colors='green',
                   linestyles='dashed')
    ax2.set_xlim(s, k)
    ax2.set_ylim(0, max_ebits + 0.4)
    ax2.grid()
    plt.xticks(fontsize=tickssize)
    plt.yticks(fontsize=tickssize)

    plt.subplots_adjust(hspace=0)

    plt.savefig('plot-' + str(n_qubits) + 'q-' + str(max_ebits) + 'l-' +
                str(n_instances) + 'i-' + method + '.pdf',
                bbox_inches='tight')
コード例 #20
0
 def test_is_unitary(self):
     # Given
     U = unitary_group.rvs(4)
     # When/Then
     self.assertTrue(is_unitary(U))
コード例 #21
0
    def test_optimize_fixed(self):
        u1 = unitary_group.rvs(8)
        g1 = Gate(u1, (0, 1, 2))
        circ = optimize([g1], u1)

        self.assertTrue(np.allclose(circ[0].utry, g1.utry))
コード例 #22
0
    # Obtain the single qubit unitaries
    Gs, Rs = decompose_uniformly_controlled_unitaries(unitaries)
    assert len(Gs) == 2**n

    # Return the result
    return fill_uniformly_controlled_circuit(Gs, cqs, tq), Rs


if __name__ == "__main__":
    from scipy.stats import unitary_group
    from pyquil.quil import Pragma
    import itertools as it

    np.set_printoptions(linewidth=200)
    n = 2
    unitaries = [unitary_group.rvs(2) for _ in range(2**n)]
    qubits = list(range(n + 1))
    program = pq.Program()
    UCC, R = generate_uniformly_controlled_circuit(unitaries, qubits[:n],
                                                   qubits[-1])
    program += UCC
    print("program:")
    print(program)
    print("Phases:")
    print(R)

    exit()

    # Correct indexing mess
    corrected_U = np.empty(U.shape, dtype=np.complex_)
    for i, j in it.product(range(2**(n + 1)), repeat=2):
コード例 #23
0
ファイル: tools.py プロジェクト: quantumsim/quantumsim
def random_unitary_matrix(dim: int, seed: int):
    rng = np.random.RandomState(seed)
    return unitary_group.rvs(dim, random_state=rng)
コード例 #24
0
    def test_mixed_polarity_controls(self, control_wires, wires,
                                     control_values):
        """Test if ControlledQubitUnitary properly applies mixed-polarity
        control values."""
        target_wires = Wires(wires)

        dev = qml.device("default.qubit",
                         wires=len(control_wires + target_wires))

        # Pick a random unitary
        U = unitary_group.rvs(2**len(target_wires), random_state=1967)

        # Pick random starting state for the control and target qubits
        control_state_weights = np.random.normal(
            size=(2**(len(control_wires) + 1) - 2))
        target_state_weights = np.random.normal(
            size=(2**(len(target_wires) + 1) - 2))

        @qml.qnode(dev)
        def circuit_mixed_polarity():
            qml.templates.ArbitraryStatePreparation(control_state_weights,
                                                    wires=control_wires)
            qml.templates.ArbitraryStatePreparation(target_state_weights,
                                                    wires=target_wires)

            qml.ControlledQubitUnitary(U,
                                       control_wires=control_wires,
                                       wires=target_wires,
                                       control_values=control_values)
            return qml.state()

        # The result of applying the mixed-polarity gate should be the same as
        # if we conjugated the specified control wires with Pauli X and applied the
        # "regular" ControlledQubitUnitary in between.

        x_locations = [
            x for x in range(len(control_values)) if control_values[x] == "0"
        ]

        @qml.qnode(dev)
        def circuit_pauli_x():
            qml.templates.ArbitraryStatePreparation(control_state_weights,
                                                    wires=control_wires)
            qml.templates.ArbitraryStatePreparation(target_state_weights,
                                                    wires=target_wires)

            for wire in x_locations:
                qml.PauliX(wires=control_wires[wire])

            qml.ControlledQubitUnitary(U,
                                       control_wires=control_wires,
                                       wires=wires)

            for wire in x_locations:
                qml.PauliX(wires=control_wires[wire])

            return qml.state()

        mixed_polarity_state = circuit_mixed_polarity()
        pauli_x_state = circuit_pauli_x()

        assert np.allclose(mixed_polarity_state, pauli_x_state)
コード例 #25
0
ファイル: fidelity.py プロジェクト: samn33/qlazy
def random_unitary(qnum):

    dim = 2**qnum
    mat = unitary_group.rvs(dim)

    return mat
コード例 #26
0
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Feb  7 16:25:18 2019

@author: fred
"""

import matplotlib.pylab as plt
from scipy.stats import unitary_group
U = unitary_group.rvs(4, 100000)

import numpy as np

comput_basis = [np.array([1.,0.,0.,0.]), np.array([0.,1.,0.,0.]), np.array([0.,0.,1.,0.]), np.array([0.,0.,0.,1.])]
state_basis = [np.array([1.,0.,0.,0.]), np.array([0.,1.,0.,0.]), np.array([0., 0., 1/np.sqrt(2), 1/np.sqrt(2)]),np.array([0.,0.,1.,0.]), np.array([0.,0.,0.,1.])]
state_decompo = np.array([1,1,2,-1,-1])
cnot = np.array([[1.-0.j, 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 0., 1.], [0., 0., 1., 0.]])

def fid1(A, T= cnot):
    d = A.shape[0]
    f = np.square(np.abs(1/d * np.trace(np.transpose(np.conj(A)).dot(T))))
    return f

def fid_cheap(A, T=cnot, basis=comput_basis):
    ev_A = [A.dot(b) for b in basis]
    ev_T = [T.dot(b) for b in basis]
    f = np.average([np.square(np.abs(np.dot(np.conj(t), a))) for a, t in zip(ev_A, ev_T)])
    return f

コード例 #27
0
def gen_hermite(eig, compl=False):
    n = eig.shape[0]
    B = unitary_group.rvs(n)
    return B.T.conj() @ np.diag(eig) @ B
コード例 #28
0
def test_cossin_error_missing_partitioning():
    with pytest.raises(ValueError, match=".*exactly four arrays.* got 2"):
        cossin(unitary_group.rvs(2))

    with pytest.raises(ValueError, match=".*might be due to missing p, q"):
        cossin(unitary_group.rvs(4))
コード例 #29
0
    if term > 0 and 1 / np.cosh(0.5 * term) < np.exp(-e**2 / (4 * K)):
        print("This experiment evades our algorithm!")
        return
    else:
        # sample from the output state
        mean = np.zeros([2 * M])
        V = ClosestClassicalState(r, K, eta, U, tbar)
        import time
        t0 = time.time()
        x = np.random.multivariate_normal(
            mean, np.linalg.inv(V - tbar * np.identity(2 * M)))
        # sample from the measurement
        n = [
            bernoulli.rvs(np.exp(-(x[i]**2 + x[i + 1]**2) / 4))
            for i in range(len(x) - 1)
        ]
        print("{} sec".format(time.time() - t0))
    return n


r = 0.1
K = 4
eta = 0.088
U = unitary_group.rvs(12)
etaD = 0.78
pD = 10**(-4)
e = 0.023

n = sampleGBS(r, K, eta, U, etaD, pD, e)
print(n)