def do_kernel_ridge(stats, library, param_bound): "This function transforms the accepted parameter values using local linear regression" X = sm.add_constant(stats) Y=library clf = KernelRidge(alpha=1.0, kernel='rbf', coef0=1) resul = clf.fit(X, Y) resul_coef=np.dot(X.transpose(), resul.dual_coef_) coefficients =resul_coef[1:] para_reg =Y- stats.dot(coefficients) para_reg=do_ivlogit_transformation(para_reg, param_bound) parameter_estimate = np.average(para_reg, axis=0) HPDR=pymc3.stats.hpd(para_reg) return parameter_estimate, HPDR
def do_kernel_ridge(stats, library, param_bound): #print('X:', X.shape) #print('Y:', Y.shape) #'rbf' X = sm.add_constant(stats) Y=library clf = KernelRidge(alpha=1.0, kernel='rbf', coef0=1) resul = clf.fit(X, Y) resul_coef=np.dot(X.transpose(), resul.dual_coef_) coefficients =resul_coef[1:] #mean_conf=confidence_interval_Kridge(logit(library), weights, stats,resul_coef) para_reg =Y- stats.dot(coefficients) para_reg=do_ivlogit_transformation(para_reg, param_bound) #param_SS[:,ii] =Y[:,ii]- inv_logit(res_wls_SS.params[1:])+inv_logit(res_wls_OS.params[1:]) parameter_estimate = np.average(para_reg, axis=0) HPDR=pymc3.stats.hpd(para_reg) return parameter_estimate, HPDR