コード例 #1
0
    def __init__(self, num_individuals, landscape, alpha=1, c=1.5):
        """
        Initialization of the main parameters of the algorithm.

        Args:
            num_individuals (int): Number of nests.
            landscape (FitnessLandscape): Fitness landscape to evaluate the cuckoo search.
            alpha (int, optional): Parameter to scale the step size. Defaults to 1.
            c (float, optional): Controls the tail of the lévy distribution. Set between 1 and 3. Defaults to 1.5.
        """
        self.alpha = alpha
        self.num_individuals = num_individuals
        self.landscape = landscape
        self.population = self._initialize_population()
        self.best_fitness = -np.inf
        self.levy = levy(scale=c)
コード例 #2
0
def search(objective, search_space, max_gen, pop=None, switch_prob=0.8):
    if pop == None:  # create/fit new population
        pop = [{
            'vector': random_solution(search_space)
        } for x in range(pop_count)]
    else:
        pop = [{'vector': np.array(x)} for x in pop]

    for p in pop:
        p['objective'] = objective(
            p['vector'])  # calculate initial objectives of population

    best = min(
        pop,
        key=lambda x: x['objective'])  # keep track of best for local search

    l = levy()  # levy generator for random walk

    for gen in range(max_gen):
        for f in pop:
            if np.random.uniform() < switch_prob:
                step = np.array([
                    l.ppf(np.random.uniform()) for x in f["vector"]
                ])  # create levy walk
                diff = best['vector'] - f['vector']
                f['vector'] = f[
                    'vector'] + step * diff  # do levy walk in direction of best
            else:
                ep = np.random.uniform(
                )  # global - pick two points and move using their difference
                j, k = np.random.choice(pop), np.random.choice(pop)
                diff = k['vector'] - j['vector']
                f['vector'] = f['vector'] + ep * diff

            for i in range(len(f["vector"])):  # keep it inside search space
                f["vector"][i] = min(f["vector"][i], search_space[i][1])
                f["vector"][i] = max(f["vector"][i], search_space[i][0])

            f['objective'] = objective(f['vector'])

        best = min(pop, key=lambda x: x['objective'])
    return [x['vector'] for x in pop]
コード例 #3
0
def comparison_densities(stock=0):
    """
    Plots the histogram of the stock's returns and different densities fitted to
    the data.
    """
    r = Returns.iloc[:, stock]
    bins = np.linspace(- 3 * r.std(), 3 * r.std(), 100)
    plt.figure(figsize=figsize)
    ax = plt.gca()
    r.hist(normed=True, bins=bins, label='{:s} returns'.format(Data.columns[stock]), alpha=0.5, ax=ax)
    rvs = [
        ('T 0.01', 'orange', t(df=0.01, loc=r.mean(), scale=r.std())),
        ('T 0.1', 'orange', t(df=0.1, loc=r.mean(), scale=r.std())),
        ('Gaussian', 'purple', norm(loc=r.mean(), scale=r.std())),
        ('Cauchy', 'green', cauchy(loc=r.mean(), scale=r.std())),
        (u'Lévy', 'yellow', levy(loc=r.mean(), scale=r.std())),
        ('Non Parametric', 'red', gaussian_kde(r))
    ]
    for (name, color, rv) in rvs:
        ax.plot(bins, rv.pdf(bins), label=name, lw=2, color=color)
    plt.legend()
    plt.show()
コード例 #4
0
# Calculate a few first moments:

mean, var, skew, kurt = levy.stats(moments='mvsk')

# Display the probability density function (``pdf``):

x = np.linspace(levy.ppf(0.01), levy.ppf(0.99), 100)
ax.plot(x, levy.pdf(x), 'r-', lw=5, alpha=0.6, label='levy pdf')

# Alternatively, the distribution object can be called (as a function)
# to fix the shape, location and scale parameters. This returns a "frozen"
# RV object holding the given parameters fixed.

# Freeze the distribution and display the frozen ``pdf``:

rv = levy()
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

# Check accuracy of ``cdf`` and ``ppf``:

vals = levy.ppf([0.001, 0.5, 0.999])
np.allclose([0.001, 0.5, 0.999], levy.cdf(vals))
# True

# Generate random numbers:

r = levy.rvs(size=1000)

# And compare the histogram:

ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
コード例 #5
0
ファイル: conftest.py プロジェクト: ashutoshvarma/dfit
def all_dists():
    # dists param were taken from scipy.stats official
    # documentaion examples
    # Total - 89
    return {
        "alpha":
        stats.alpha(a=3.57, loc=0.0, scale=1.0),
        "anglit":
        stats.anglit(loc=0.0, scale=1.0),
        "arcsine":
        stats.arcsine(loc=0.0, scale=1.0),
        "beta":
        stats.beta(a=2.31, b=0.627, loc=0.0, scale=1.0),
        "betaprime":
        stats.betaprime(a=5, b=6, loc=0.0, scale=1.0),
        "bradford":
        stats.bradford(c=0.299, loc=0.0, scale=1.0),
        "burr":
        stats.burr(c=10.5, d=4.3, loc=0.0, scale=1.0),
        "cauchy":
        stats.cauchy(loc=0.0, scale=1.0),
        "chi":
        stats.chi(df=78, loc=0.0, scale=1.0),
        "chi2":
        stats.chi2(df=55, loc=0.0, scale=1.0),
        "cosine":
        stats.cosine(loc=0.0, scale=1.0),
        "dgamma":
        stats.dgamma(a=1.1, loc=0.0, scale=1.0),
        "dweibull":
        stats.dweibull(c=2.07, loc=0.0, scale=1.0),
        "erlang":
        stats.erlang(a=2, loc=0.0, scale=1.0),
        "expon":
        stats.expon(loc=0.0, scale=1.0),
        "exponnorm":
        stats.exponnorm(K=1.5, loc=0.0, scale=1.0),
        "exponweib":
        stats.exponweib(a=2.89, c=1.95, loc=0.0, scale=1.0),
        "exponpow":
        stats.exponpow(b=2.7, loc=0.0, scale=1.0),
        "f":
        stats.f(dfn=29, dfd=18, loc=0.0, scale=1.0),
        "fatiguelife":
        stats.fatiguelife(c=29, loc=0.0, scale=1.0),
        "fisk":
        stats.fisk(c=3.09, loc=0.0, scale=1.0),
        "foldcauchy":
        stats.foldcauchy(c=4.72, loc=0.0, scale=1.0),
        "foldnorm":
        stats.foldnorm(c=1.95, loc=0.0, scale=1.0),
        # "frechet_r": stats.frechet_r(c=1.89, loc=0.0, scale=1.0),
        # "frechet_l": stats.frechet_l(c=3.63, loc=0.0, scale=1.0),
        "genlogistic":
        stats.genlogistic(c=0.412, loc=0.0, scale=1.0),
        "genpareto":
        stats.genpareto(c=0.1, loc=0.0, scale=1.0),
        "gennorm":
        stats.gennorm(beta=1.3, loc=0.0, scale=1.0),
        "genexpon":
        stats.genexpon(a=9.13, b=16.2, c=3.28, loc=0.0, scale=1.0),
        "genextreme":
        stats.genextreme(c=-0.1, loc=0.0, scale=1.0),
        "gausshyper":
        stats.gausshyper(a=13.8, b=3.12, c=2.51, z=5.18, loc=0.0, scale=1.0),
        "gamma":
        stats.gamma(a=1.99, loc=0.0, scale=1.0),
        "gengamma":
        stats.gengamma(a=4.42, c=-3.12, loc=0.0, scale=1.0),
        "genhalflogistic":
        stats.genhalflogistic(c=0.773, loc=0.0, scale=1.0),
        "gilbrat":
        stats.gilbrat(loc=0.0, scale=1.0),
        "gompertz":
        stats.gompertz(c=0.947, loc=0.0, scale=1.0),
        "gumbel_r":
        stats.gumbel_r(loc=0.0, scale=1.0),
        "gumbel_l":
        stats.gumbel_l(loc=0.0, scale=1.0),
        "halfcauchy":
        stats.halfcauchy(loc=0.0, scale=1.0),
        "halflogistic":
        stats.halflogistic(loc=0.0, scale=1.0),
        "halfnorm":
        stats.halfnorm(loc=0.0, scale=1.0),
        "halfgennorm":
        stats.halfgennorm(beta=0.675, loc=0.0, scale=1.0),
        "hypsecant":
        stats.hypsecant(loc=0.0, scale=1.0),
        "invgamma":
        stats.invgamma(a=4.07, loc=0.0, scale=1.0),
        "invgauss":
        stats.invgauss(mu=0.145, loc=0.0, scale=1.0),
        "invweibull":
        stats.invweibull(c=10.6, loc=0.0, scale=1.0),
        "johnsonsb":
        stats.johnsonsb(a=4.32, b=3.18, loc=0.0, scale=1.0),
        "johnsonsu":
        stats.johnsonsu(a=2.55, b=2.25, loc=0.0, scale=1.0),
        "ksone":
        stats.ksone(n=1e03, loc=0.0, scale=1.0),
        "kstwobign":
        stats.kstwobign(loc=0.0, scale=1.0),
        "laplace":
        stats.laplace(loc=0.0, scale=1.0),
        "levy":
        stats.levy(loc=0.0, scale=1.0),
        "levy_l":
        stats.levy_l(loc=0.0, scale=1.0),
        "levy_stable":
        stats.levy_stable(alpha=0.357, beta=-0.675, loc=0.0, scale=1.0),
        "logistic":
        stats.logistic(loc=0.0, scale=1.0),
        "loggamma":
        stats.loggamma(c=0.414, loc=0.0, scale=1.0),
        "loglaplace":
        stats.loglaplace(c=3.25, loc=0.0, scale=1.0),
        "lognorm":
        stats.lognorm(s=0.954, loc=0.0, scale=1.0),
        "lomax":
        stats.lomax(c=1.88, loc=0.0, scale=1.0),
        "maxwell":
        stats.maxwell(loc=0.0, scale=1.0),
        "mielke":
        stats.mielke(k=10.4, s=3.6, loc=0.0, scale=1.0),
        "nakagami":
        stats.nakagami(nu=4.97, loc=0.0, scale=1.0),
        "ncx2":
        stats.ncx2(df=21, nc=1.06, loc=0.0, scale=1.0),
        "ncf":
        stats.ncf(dfn=27, dfd=27, nc=0.416, loc=0.0, scale=1.0),
        "nct":
        stats.nct(df=14, nc=0.24, loc=0.0, scale=1.0),
        "norm":
        stats.norm(loc=0.0, scale=1.0),
        "pareto":
        stats.pareto(b=2.62, loc=0.0, scale=1.0),
        "pearson3":
        stats.pearson3(skew=0.1, loc=0.0, scale=1.0),
        "powerlaw":
        stats.powerlaw(a=1.66, loc=0.0, scale=1.0),
        "powerlognorm":
        stats.powerlognorm(c=2.14, s=0.446, loc=0.0, scale=1.0),
        "powernorm":
        stats.powernorm(c=4.45, loc=0.0, scale=1.0),
        "rdist":
        stats.rdist(c=0.9, loc=0.0, scale=1.0),
        "reciprocal":
        stats.reciprocal(a=0.00623, b=1.01, loc=0.0, scale=1.0),
        "rayleigh":
        stats.rayleigh(loc=0.0, scale=1.0),
        "rice":
        stats.rice(b=0.775, loc=0.0, scale=1.0),
        "recipinvgauss":
        stats.recipinvgauss(mu=0.63, loc=0.0, scale=1.0),
        "semicircular":
        stats.semicircular(loc=0.0, scale=1.0),
        "t":
        stats.t(df=2.74, loc=0.0, scale=1.0),
        "triang":
        stats.triang(c=0.158, loc=0.0, scale=1.0),
        "truncexpon":
        stats.truncexpon(b=4.69, loc=0.0, scale=1.0),
        "truncnorm":
        stats.truncnorm(a=0.1, b=2, loc=0.0, scale=1.0),
        "tukeylambda":
        stats.tukeylambda(lam=3.13, loc=0.0, scale=1.0),
        "uniform":
        stats.uniform(loc=0.0, scale=1.0),
        "vonmises":
        stats.vonmises(kappa=3.99, loc=0.0, scale=1.0),
        "vonmises_line":
        stats.vonmises_line(kappa=3.99, loc=0.0, scale=1.0),
        "wald":
        stats.wald(loc=0.0, scale=1.0),
        "weibull_min":
        stats.weibull_min(c=1.79, loc=0.0, scale=1.0),
        "weibull_max":
        stats.weibull_max(c=2.87, loc=0.0, scale=1.0),
        "wrapcauchy":
        stats.wrapcauchy(c=0.0311, loc=0.0, scale=1.0),
    }