コード例 #1
0
ファイル: SloppyScaling.py プロジェクト: gdurin/SloppyScaling
 def getAxis(self,X,Y):
     """
     return the proper axis limits for the plots
     """
     out = []
     mM = [(min(X),max(X)),(min(Y),max(Y))]
     for i,j in mM:
         #YJC: checking if values are negative, if yes, return 0 and break
         if j <0 or i <0:
             return 0
         log_i = scipy.log10(i)
         d, I = scipy.modf(log_i)
         if log_i < 0:
             add = 0.5 *(scipy.absolute(d)<0.5)
         else:
             add = 0.5 *(scipy.absolute(d)>0.5)
         m = scipy.floor(log_i) + add
         out.append(10**m)
         log_j = scipy.log10(j)
         d, I = scipy.modf(log_j)
         if log_j < 0:
             add = - 0.5 *(scipy.absolute(d)>0.5)
         else:
             add = - 0.5 *(scipy.absolute(d)<0.5)
         m = scipy.ceil(log_j) + add
         out.append(10**m)
     return tuple(out)
コード例 #2
0
ファイル: log.py プロジェクト: pvnuffel/riskmodel
 def integrate(self,u,lambd):
     dt = self.dt
     Dt = self.Dt
     dx = self.dx
     alpha, steps = scipy.modf(Dt/dt)
     # we assume that u is the logarithm of the density
     # print "in integrate"
     # print "u: ", u
     # print "+++"
     y=scipy.exp(u)
     # print "y: ", y
     # print "+++"
     for i in range(int(steps)):
            rhs=self.rhs(y,lambd)
            y=y+rhs*dt
     rhs=self.rhs(y,lambd)
     y_new=y+rhs*dt
     y_Dt = alpha*y_new+(1-alpha)*y
     # print "y_Dt: ", y_Dt
     # print '++++'
     # print sum(y_Dt)
     # print "+++"
     u_Dt = scipy.log(y_Dt)
     # print "u_Dt: ", u_Dt
     # print "-------"
     return u_Dt
コード例 #3
0
 def integrate(self, u, lambd):
     dt = self.dt
     Dt = self.Dt
     dx = self.dx
     alpha, steps = scipy.modf(Dt / dt)
     y = scipy.array(u)
     # we assume that u is the logarithm of the density
     # print "in integrate"
     # print "u: ", u
     # print "+++"
     for i in range(int(steps)):
         rhs = self.rhs(y, lambd)
         y = y + rhs * dt
     rhs = self.rhs(y, lambd)
     y_new = y + rhs * dt
     y_Dt = alpha * y_new + (1 - alpha) * y
     # print '++++'
     u_Dt = scipy.array(y_Dt)
     # print sum(u_Dt)
     # print "+++"
     # print "u_Dt: ", u_Dt
     # print "-------"
     return u_Dt