コード例 #1
0
    def example2():

        from pyigrf.pyigrf import GetIGRF
        from scipy import arange, arcsin, rad2deg

        xlat = -11.95
        xlon = 283.13
        year = 2004.75
        altlim = [90, 500.]
        altstp = 10.

        altbins = arange(altlim[0], altlim[1] + altstp, altstp)

        for i in range(len(altbins)):

            bn, be, bd, xl, icode = GetIGRF(xlat, xlon, altbins[i], year)

            # Horizontal component
            bh = (bn**2 + be**2)**.5
            # Total component
            ba = (bn**2 + be**2 + bd**2)**.5
            # Dip angle
            dip = rad2deg(arcsin(bd / ba))
            # Declination angle
            dec = rad2deg(arcsin(be / bh))

            print(i, altbins[i], bn, be, bd, xl, icode)
            print(bh, ba, dip, dec)
            print('')
コード例 #2
0
ファイル: xyzfield.py プロジェクト: josecper/geofieldpy
def xyzplot(theta, phi, x, y, z, vmin=-70000, vmax=70000, cmap="bwr"):
    """
    plots the x,y, and z components of the magnetic field in three separate color plots, over
    a world map in cylindrical equidistant projection, given point coordinate vectors theta and phi
    (work in other projections is in progress).
    """
    from matplotlib import pyplot
    from mpl_toolkits.basemap import Basemap

    base = Basemap(
        projection="cyl",
        llcrnrlat=90 - scipy.rad2deg(max(theta)),
        urcrnrlat=90 - scipy.rad2deg(min(theta)),
        llcrnrlon=scipy.rad2deg(min(phi)),
        urcrnrlon=scipy.rad2deg(max(phi)),
        # llcrnrlat=-90, urcrnrlat=90,llcrnrlon=-180,urcrnrlon=180,
        resolution="l",
    )

    # xtrans=numpy.rad2deg(phi)-180
    # ytrans=numpy.rad2deg(theta)-90

    # xtrans=numpy.rad2deg(phi)
    # ytrans=90-numpy.rad2deg(theta)

    ytrans = 90 - numpy.rad2deg(theta)
    xtrans = numpy.rad2deg(phi)
    fig = pyplot.figure(figsize=(10, 13))
    axis1 = fig.add_subplot(311)
    axis1.set_title("X")
    axis2 = fig.add_subplot(312)
    axis2.set_title("Y")
    axis3 = fig.add_subplot(313)
    axis3.set_title("Z")

    base.drawcoastlines(ax=axis1)
    base.drawcoastlines(ax=axis2)
    base.drawcoastlines(ax=axis3)

    pyplot.set_cmap(cmap)
    # axis1.pcolor(xtrans,ytrans,numpy.rot90(x),vmin=vmin,vmax=vmax)
    # axis2.pcolor(xtrans,ytrans,numpy.rot90(y),vmin=vmin,vmax=vmax)
    # cplot=axis3.pcolor(xtrans,ytrans,numpy.rot90(z),vmin=vmin,vmax=vmax)

    axis1.pcolormesh(xtrans, ytrans, x.transpose(), vmin=vmin, vmax=vmax, shading="gouraud")
    axis2.pcolormesh(xtrans, ytrans, y.transpose(), vmin=vmin, vmax=vmax, shading="gouraud")
    cplot = axis3.pcolormesh(xtrans, ytrans, z.transpose(), vmin=vmin, vmax=vmax, shading="gouraud")

    pyplot.colorbar(mappable=cplot, orientation="vertical", ax=[axis1, axis2, axis3], aspect=40, format="%1.0f nT")
    #   fig.show()
    return fig
コード例 #3
0
def get_freq_response(f0, f1, m, b, n=5000):
    """
    Get frequency response for system. Returns gain, phase and frequency.   

    Inputs:
    f0 = starting frequency
    f1 = stopping frequency
    m  = mass of system
    b  = damping coefficient

    Outputs:
    mag_db = gain (output/input)
    phase  = phase shift in degrees
    f      = array of frequencies
    """
    def transfer_func(s, m, b):
        return 1.0 / (m * s + b)

    f = scipy.linspace(f0, f1, n)
    x = 2.0 * scipy.pi * f * 1j
    y = transfer_func(x, m, b)
    mag = scipy.sqrt(y.real**2 + y.imag**2)
    phase = scipy.arctan2(y.imag, y.real)
    phase = scipy.rad2deg(phase)
    mag_db = 20.0 * scipy.log10(mag)
    return mag_db, phase, f
コード例 #4
0
def young(phase,
          sigma_sg,
          sigma_sl,
          surface_tension='pore.surface_tension',
          **kwargs):
    r'''
    Calculate contact angle using Young's equation
    
    Notes
    -----
    Young's equation is: sigma_lg*Cos(theta)=sigma_sg - sigma_sl
    where
    sigma_lg is the liquid-gas surface tension [N/m]
    sigma_sg is the solid-gas surface tension [N/m]
    sigma_sl is the solid-liquid interfacial tension [J/m^2]
    theta is the Young contact angle [rad]
           
    '''
    if surface_tension.split('.')[0] == 'pore':
        sigma = phase[surface_tension]
        sigma = phase.interpolate_data(data=sigma)
    else:
        sigma = phase[surface_tension]
    theta = sp.arccos((sigma_sg - sigma_sl) / phase[surface_tension])
    theta = sp.rad2deg(theta)
    return theta
コード例 #5
0
ファイル: contact_angle.py プロジェクト: Maggie1988/OpenPNM
def young(phase,
          sigma_sg,
          sigma_sl,
          surface_tension='pore.surface_tension',
          **kwargs):
    r'''
    Calculate contact angle using Young's equation
    
    Notes
    -----
    Young's equation is: sigma_lg*Cos(theta)=sigma_sg - sigma_sl
    where
    sigma_lg is the liquid-gas surface tension [N/m]
    sigma_sg is the solid-gas surface tension [N/m]
    sigma_sl is the solid-liquid interfacial tension [J/m^2]
    theta is the Young contact angle [rad]
           
    '''
    if surface_tension.split('.')[0] == 'pore':
        sigma = phase[surface_tension]
        sigma = phase.interpolate_data(data=sigma)
    else:
        sigma = phase[surface_tension]
    theta = sp.arccos((sigma_sg - sigma_sl)/phase[surface_tension])
    theta = sp.rad2deg(theta)
    return theta
コード例 #6
0
def finish_up(ws1, ws3, bus_info, bus_size, g_matrix, b_matrix, input_line, line_size):
    for i in range(bus_size):
        bus_info[0,2] += (bus_info[0,4]*bus_info[i,4]
                                    *(g_matrix[0,i]*np.cos(bus_info[0,5]-bus_info[i,5])
                                      +b_matrix[0,i]*np.sin(bus_info[0,5]-bus_info[i,5])))
        ws1.cell(row=i+2, column=1).value = i+1
        ws1.cell(row=i+2, column=2).value = bus_info[i, 4]
        bus_info[i, 5] = sp.rad2deg(bus_info[i,5])
        ws1.cell(row=i + 2, column=3).value = bus_info[i, 5]
        ws1.cell(row=i + 2, column=4).value = s_base*bus_info[i, 2]
        ws1.cell(row=i + 2, column=5).value = -1*s_base*bus_info[i, 3]
        if bus_info[i, 4] > 1.05 or bus_info[i, 4] < 0.95:
            ws1.cell(row=i+2,column=6).value = "TRUE"
        else:
            ws1.cell(row=i + 2, column=6).value = "FALSE"

    for i in range(line_size):
        ws3.cell(row=i + 2, column=1).value = input_line[i, 0]
        ws3.cell(row=i + 2, column=2).value = input_line[i, 1]

        ws3.cell(row=i + 2, column=5).value = 0
        if input_line[i,5] < ws3.cell(row=i+2, column=5).value:
            ws3.cell(row=i + 2, column=6).value = "TRUE"
        else:
            ws3.cell(row=i + 2, column=6).value = "FALSE"
コード例 #7
0
ファイル: error_ellipse.py プロジェクト: cmp346/densityplot
    def two_d_ellipse(self,proj_vars,p,**kwargs):
        """Return the 2d projection as a matplotlib Ellipse object for the given p values
        Parameters
        ----------
        proj_vars : array that is 1 for the projection dimension, and 0 other wise
                    i.e. array([0,0,1,0,1]) will project 5d ellipsoid onto the plane
                    span by the 3rd and 5th variable.
        p         : the percent of points contained in the ellipsoid, either a single
                     value of a list of values i.e. 0.68 or [0.68,0.955],

                     if p is a list then a list of Ellipse objects will be returned, one for each p value
        Keywords
        --------
        kwargs : keywords to be passed into the matplotlib Ellipse object

        Return
        ------
        ells : matplotlib Ellipse object
        """
        mu,u,s=self.proj(proj_vars) #get the mean, eigenvectors, and eigenvales for projected array
        try: #if a list get the length
            l=len(p)
        except: #if not then make it a list of length 1
            l=1
            p=[p]
        invp=st.chi.ppf(p,self.dim) #scale it using a chi distribution (see, now we scale it)
        angle=rad2deg(arctan2(u[0,1],u[0,0])) #angle the first eignevector makes with the x-axis
        ells=[] #list to hold the Ellipse objects
        for i in invp:
            ells.append(Ellipse(xy=mu,width=s[0]*i*2,height=s[1]*i*2,angle=angle,**kwargs))#make the Ellipse objects, the *2 is needed since Ellipse takes the full axis vector
        if l==1: #if only one p values was given return the Ellipse object (not as a list)
            return ells[0]
        else: #else return the list of Ellipse objects
            return ells
コード例 #8
0
    def test_display_values(self):
        model = load_fmu(self.coupled_name)

        import scipy

        val = model.get_variable_display_value("J1.phi")
        val_ref = scipy.rad2deg(model.get("J1.phi"))

        nose.tools.assert_almost_equal(val, val_ref)

        model.simulate()

        val = model.get_variable_display_value("J1.phi")
        val_ref = scipy.rad2deg(model.get("J1.phi"))

        nose.tools.assert_almost_equal(val, val_ref)
コード例 #9
0
ファイル: dbn2latex.py プロジェクト: undercoveridiot/gunfolds
def getangle(A, B):
    """
    When A and  B are two angles around the clock  returns an angle of
    the line that is connecting them.
    """
    x = array([cos(deg2rad(A)), sin(deg2rad(A))])
    y = array([cos(deg2rad(B)), sin(deg2rad(B))])
    d = y - x
    return rad2deg(math.atan2(d[1], d[0]))
コード例 #10
0
ファイル: dbn2latex.py プロジェクト: sergeyplis/gunfolds
def getangle(A, B):
    """
    When A and  B are two angles around the clock  returns an angle of
    the line that is connecting them.
    """
    x = array([cos(deg2rad(A)), sin(deg2rad(A))])
    y = array([cos(deg2rad(B)), sin(deg2rad(B))])
    d = y - x
    return rad2deg(math.atan2(d[1], d[0]))
コード例 #11
0
    def test_healpix_sphere(self):
        # Sphere parameters.
        R = 5
        # Expected outputs of healpix_sphere() applied to inputs.
        if RADIANS:
            sigma_a = sqrt(3 - 3 * sin(a[1]))
        else:
            sigma_a = sqrt(3 - 3 * sin(deg2rad(a[1])))
        ha = (pi / 4 * (1 - sigma_a), pi / 4 * (2 - sigma_a))
        hb = (ha[0], -ha[1])
        healpix_sphere_outputs = [(0, 0), (0, pi / 4),
                                  (0, -pi / 4), (pi / 2, 0), (-pi / 2, 0),
                                  (-pi, 0), (-3 * pi / 4, pi / 2),
                                  (-3 * pi / 4, -pi / 2), ha, hb]
        healpix_sphere_outputs = [
            tuple(R * array(p)) for p in healpix_sphere_outputs
        ]

        # Forward projection should be correct on test points.
        f = Proj(proj='healpix', R=R)
        given = inputs
        get = [f(*p, radians=RADIANS) for p in given]
        expect = healpix_sphere_outputs
        # Fuzz to allow for rounding errors:
        error = 1e-12
        print()
        print('=' * 80)
        print('HEALPix forward projection, sphere with radius R = %s' % R)
        print('input (radians) / expected output (meters) / received output')
        print('=' * 80)
        for i in range(len(get)):
            print(given[i], expect[i], get[i])
            self.assertTrue(rel_err(get[i], expect[i]) < error)

        # Inverse of projection of a point p should yield p.
        given = get
        get = [f(*q, radians=RADIANS, inverse=True) for q in given]
        expect = inputs
        print('=' * 80)
        print('HEALPix inverse projection, sphere with radius R = %s' % R)
        print('input (meters) / expected output (radians) / received output')
        print('=' * 80)
        for i in range(len(get)):
            print(given[i], expect[i], get[i])
            self.assertTrue(rel_err(get[i], expect[i]) < error)

        # Inverse projection of p below should return longitude of -pi.
        # Previously, it was returning a number slightly less than pi
        # because of a rounding error, which got magnified by
        # wrap_longitude()
        p = R * array((-7 * pi / 8, 3 * pi / 8))
        get = f(*p, radians=RADIANS, inverse=True)
        p1 = arcsin(1 - 1.0 / 12)
        if not RADIANS:
            p1 = rad2deg(p1)
        expect = (-PI, p1)
        self.assertTrue(rel_err(get, expect) < error)
コード例 #12
0
 def decodeMessageSensorUDP(self, msg):
   """ This is used to decode message from sensorUDP application from the android market.
   The orientation field was first used, but its conventions were unclear.
   So now acceleration and magnetic vectors should be used"""
   data = msg.split(', ')
   if data[0]=='G':
       # This is GPS message
       time = decimalstr2float(data[2])
       latitude_deg = decimalstr2float(data[3])
       longitude_deg = decimalstr2float(data[4])
       altitude = decimalstr2float(data[5])
       hdop = decimalstr2float(data[7]) # Horizontal dilution of precision
       vdop = decimalstr2float(data[8]) # Vertical dilution of precision
       print time, latitude_deg, longitude_deg, altitude, hdop, vdop
   if data[0]=='O':
       # \note This is no more used as orientation convention were unclear
       #  'O, 146, 1366575961732, 230,1182404, -075,2031250, 001,7968750'
       [ u, u,    # data not used                                         \    
       heading_deg, # pointing direction of top of phone                    \ 
       roll_deg,    # around horizontal axis, positive clockwise [-180:180] \   
       pitch_deg] = decimalstr2float(data[1:])  # around vertical axis [_90:90]
       elevation_deg = -sp.rad2deg(sp.arctan2(                     \
           sp.cos(sp.deg2rad(pitch_deg))*sp.cos(sp.deg2rad(roll_deg)),     \
           sp.sqrt(1+sp.cos(sp.deg2rad(roll_deg))**2*(sp.sin(sp.deg2rad(pitch_deg))**2-1)))) #positive up
       inclinaison_deg = pitch_deg #positive clockwise
       print heading_deg, roll_deg, pitch_deg, elevation_deg, inclinaison_deg
   if data[0] == 'A':
   # Accelerometer data
   # Index and sign are adjusted to obtain x through the screen, and z down
       deltaT = decimalstr2float(data[2])/1000 - self.time_acceleration
       if self.filterTimeConstant == 0.0:
         alpha = 1
       else:
         alpha = 1-sp.exp(-deltaT/self.filterTimeConstant)
         
       self.time_acceleration = decimalstr2float(data[2])/1000
       self.acceleration_raw[0] = decimalstr2float(data[3])
       self.acceleration_raw[1] = decimalstr2float(data[4])
       self.acceleration_raw[2] = decimalstr2float(data[5])
       # Filter the data
       self.acceleration_filtered +=alpha*(sp.array(self.acceleration_raw)-self.acceleration_filtered)
   if data[0] == 'M':
   # Magnetometer data
   # Index and sign are adjusted to obtain x through the screen, and z down
       deltaT =  decimalstr2float(data[2])/1000-self.time_magnetic
       if self.filterTimeConstant == 0.0:
         alpha = 1
       else:
         alpha = 1-sp.exp(-deltaT/self.filterTimeConstant)
         
       self.time_magnetic = decimalstr2float(data[2])/1000
       self.magnetic_raw[0] = decimalstr2float(data[3])
       self.magnetic_raw[1] = decimalstr2float(data[4])
       self.magnetic_raw[2] = -decimalstr2float(data[5])# Adapt to a bug in sensorUDP?
       # Filter the data
       self.magnetic_filtered += alpha*(sp.array(self.magnetic_raw)-self.magnetic_filtered)
コード例 #13
0
ファイル: _tests.py プロジェクト: zuroh/doamusic
def doatest():
    print("s1 is {}".format(s1_aoa))
    print("s2 is {}".format(s2_aoa))
    s1_est = music.Estimator(ants,music.covar(s1),nsignals=1)
    s2_est = music.Estimator(ants,music.covar(s2),nsignals=1)
    # s1
    t1 = time()
    s1_res = s1_est.doasearch()[0]
    t1 = time() - t1
    s1_err = sp.rad2deg(util.aoa_diff_rad(s1_res,s1_aoa))
    print("s1: found {} in {}s, error {} deg".format(s1_res,t1,s1_err))
    # s2
    t2 = time()
    s2_res = s2_est.doasearch()[0]
    t2 = time() - t2
    s2_err = sp.rad2deg(util.aoa_diff_rad(s2_res,s2_aoa))
    print("s2: found {} in {}s, error {} deg".format(s2_res,t2,s2_err))
    # both signals
    bothres = est.doasearch()
    print("Both signals:\n{}".format(bothres))
コード例 #14
0
def E2T(Ener, dspacing):
    """Calculate The angle for an Energy in eV or KeV given a dspacing
          accept, "integer", "float", monodimensional array
          return corrisponding angle in degree
       """
    if ((type(Ener) == float) or (type(Ener) == int)
            or (type(Ener) == scipy.float64) or (type(Ener) == scipy.float32)):
        if Ener > 1000:
            the = scipy.rad2deg(
                scipy.arcsin((1.23984E-6 / (Ener)) * 1E10 / (2 * dspacing)))
        if Ener < 1000:
            the = scipy.rad2deg(
                scipy.arcsin(
                    (1.23984E-6 / (Ener * 1000)) * 1E10 / (2 * dspacing)))
    else:
        if Ener[0] > 1000:
            the = scipy.rad2deg(
                scipy.arcsin((1.23984E-6 / (Ener)) * 1E10 / (2 * dspacing)))
        if Ener[0] < 1000:
            the = scipy.rad2deg(
                scipy.arcsin(
                    (1.23984E-6 / (Ener * 1000)) * 1E10 / (2 * dspacing)))
    return the
コード例 #15
0
ファイル: ecef.py プロジェクト: yxiaowhut/MATLAB
def ecef2geodetic(x, y, z, degrees=True):
    """ecef2geodetic(x, y, z)
                     [m][m][m]
    Convert ECEF coordinates to geodetic.
    J. Zhu, "Conversion of Earth-centered Earth-fixed coordinates \
    to geodetic coordinates," IEEE Transactions on Aerospace and \
    Electronic Systems, vol. 30, pp. 957-961, 1994."""
    r = sqrt(x * x + y * y)
    Esq = a * a - b * b
    F = 54 * b * b * z * z
    G = r * r + (1 - esq) * z * z - esq * Esq
    C = (esq * esq * F * r * r) / (pow(G, 3))
    S = cbrt(1 + C + sqrt(C * C + 2 * C))
    P = F / (3 * pow((S + 1 / S + 1), 2) * G * G)
    Q = sqrt(1 + 2 * esq * esq * P)
    r_0 =  -(P * esq * r) / (1 + Q) + sqrt(0.5 * a * a*(1 + 1.0 / Q) - \
        P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r)
    U = sqrt(pow((r - esq * r_0), 2) + z * z)
    V = sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z)
    Z_0 = b * b * z / (a * V)
    h = U * (1 - b * b / (a * V))
    lat = arctan((z + e1sq * Z_0) / r)
    lon = arctan2(y, x)
    return rad2deg(lat), rad2deg(lon), z
コード例 #16
0
ファイル: ecef.py プロジェクト: Terradue/adore-doris
def ecef2geodetic(x, y, z, degrees=True):
    """ecef2geodetic(x, y, z)
                     [m][m][m]
    Convert ECEF coordinates to geodetic.
    J. Zhu, "Conversion of Earth-centered Earth-fixed coordinates \
    to geodetic coordinates," IEEE Transactions on Aerospace and \
    Electronic Systems, vol. 30, pp. 957-961, 1994."""
    r = sqrt(x * x + y * y)
    Esq = a * a - b * b
    F = 54 * b * b * z * z
    G = r * r + (1 - esq) * z * z - esq * Esq
    C = (esq * esq * F * r * r) / (pow(G, 3))
    S = cbrt(1 + C + sqrt(C * C + 2 * C))
    P = F / (3 * pow((S + 1 / S + 1), 2) * G * G)
    Q = sqrt(1 + 2 * esq * esq * P)
    r_0 =  -(P * esq * r) / (1 + Q) + sqrt(0.5 * a * a*(1 + 1.0 / Q) - \
        P * (1 - esq) * z * z / (Q * (1 + Q)) - 0.5 * P * r * r)
    U = sqrt(pow((r - esq * r_0), 2) + z * z)
    V = sqrt(pow((r - esq * r_0), 2) + (1 - esq) * z * z)
    Z_0 = b * b * z / (a * V)
    h = U * (1 - b * b / (a * V))
    lat = arctan((z + e1sq * Z_0) / r)
    lon = arctan2(y, x)
    return rad2deg(lat), rad2deg(lon), z
コード例 #17
0
ファイル: contact_angle.py プロジェクト: islah/OpenPNM
def young(phase,
          sigma_sg,
          sigma_sl,
          pore_surface_tension='pore.surface_tension',
          **kwargs):
    r'''
    Calculate contact angle using Young's equation
    
    Notes
    -----
    Young's equation is:
    
    .. math::
    
    \gamma_\mathrm{LG} \cos \theta_\mathrm{C} \ = \gamma_\mathrm{SG} - \gamma_\mathrm{SL}
    
    '''
    theta = sp.arccos((sigma_sg - sigma_sl)/phase[pore_surface_tension])
    theta = sp.rad2deg(theta)
    return theta
コード例 #18
0
    def test_distortion(self):
        epsilon = 10e-4
        # Conformal projections should have maximum angular distortion
        # equal to 0 and linear distortion equal to 1.0.  
        mad, ld, ad = distortion(merc, lam, phi)[1:]
        self.assertAlmostEqual(mad, 0.0, places=6)
        self.assertAlmostEqual(ld, 1.0, places=6)

        # Area preserving projections should have area distortion
        # equal to 1.0.  
        mad, ld, ad = distortion(cea, lam, phi)[1:]
        self.assertAlmostEqual(ad, 1.0, places=6)

        # Degrees mode output should agree with radians mode output.
        get = distortion(cea_ed, lam_deg, phi_deg)
        expect = list(distortion(cea_e, lam, phi))
        # Entry 1 is an angular measurement.
        expect[1] = rad2deg(expect[1])
        for i in range(len(expect)):
            self.assertAlmostEqual(get[i], expect[i])
コード例 #19
0
def make_initial_catalogue(path):
    from pywindow.catalogue import sky_to_cartesian
    rng = scipy.random.RandomState(seed=42)
    rmin, rmax = 2000., 3000.
    size = 100000
    catalogue = Catalogue()
    distance = rng.uniform(2000., 3000., size=size)
    ramin, ramax, decmin, decmax = 0., 30., -15, 15.
    u1, u2 = rng.uniform(size=(2, size))
    cmin = scipy.sin(scipy.deg2rad(decmin))
    cmax = scipy.sin(scipy.deg2rad(decmax))
    ra = ramin + u1 * (ramax - ramin)
    dec = 90. - scipy.rad2deg(scipy.arccos(cmin + u2 * (cmax - cmin)))
    catalogue['Position'] = sky_to_cartesian(distance, ra, dec)
    catalogue['Weight'] = catalogue.ones()
    decfrac = scipy.diff(scipy.sin(scipy.deg2rad([decmin, decmax])), axis=0)
    rafrac = scipy.diff(scipy.deg2rad([ramin, ramax]), axis=0)
    area = decfrac * rafrac
    catalogue['NZ'] = catalogue['Weight'].sum() / (area *
                                                   (rmax - rmin)) / distance**2
    catalogue.to_fits(path)
コード例 #20
0
def align_image_brute_force(image, target, search_strategy, plot=False, write_files=False, PF=None):
    if PF is None:
        PF = PatternFinder(partitions=10)

    target_center = sp.array(target.shape[:2]) / 2. - 0.5
    im_center = sp.array(image.shape[:2]) / 2. - 0.5

    #Initialize transformation between image and target as identity
    T = transform.AffineTransform(matrix=sp.array([[1,0,0],[0,1,0],[0,0,1]]))
    best_value = None

    logger = logging.getLogger('stackalign')

    for nr, search_phase in enumerate(search_strategy):
        logger.info("\nSearch phase {0}".format(nr))
        best_angle =  sp.rad2deg(T.rotation)
        angle_range = sp.linspace(
            search_phase["angle_range"][0] - best_angle,
            search_phase["angle_range"][1] - best_angle,
            search_phase["angle_range"][2]
        )

        best_coord = sp.array([int(im_center[0]+T.translation[0]),
                               int(im_center[1]+T.translation[1])])

        logger.debug(f"best so far: x,y=({best_coord[0]},{best_coord[1]}), r={best_angle:0.3f}º")
        T, value = find_pattern_rotated(PF, target, image,
                                       rescale=search_phase["rescale"],
                                       rotations=angle_range,
                                       roi_center_rc=best_coord,
                                       roi_size_hw=search_phase["roi_hw"],
                                       plot=plot,
                                       progress=tqdm)

        # TODO: Check if this can be done more efficiently
        # image_rescaled = transform.rescale(image,search_phase["rescale"])
        # Print parameters
        logger.info(print_parameters(T, value))

    return T, value
コード例 #21
0
ファイル: circles.py プロジェクト: madaslue/circlemaker
def makecircles(peakArray, wavelength, cellSize,name):
	circlePlot, ax= plt.subplots()
	filename = name + '.png'
	f.write( "--------------------- \n" )
	f.write( name + ':\n' )
	f.write(' Index   2Theta \n')
	datalimit = sp.array([0])
	for peak in peakArray:
		dhkl = cubicDSpacing(cellSize, peak)
		angle = sp.arcsin( wavelength / ( 2 * dhkl ) )
		radius = sp.tan(2 * angle)
		f.write( str(peak) + str( 2 * sp.rad2deg(angle) ) + '\n' )
		circle = plt.Circle((0,0), radius, fill=False)
		ax.add_artist(circle)
		if radius > datalimit:
			datalimit = radius
	ax.set_aspect('equal', adjustable='datalim')
	graphLimits = datalimit * 1.3 # this magic number is just a format thing
	plt.xlim(-graphLimits, graphLimits)
	plt.ylim(-graphLimits, graphLimits)
	circlePlot.savefig(filename)
	f.write( "--------------------- \n\n" )
コード例 #22
0
ファイル: testProjection.py プロジェクト: traverseda/robokite
    return (x>0 and x<image.width and y>0 and y<image.height)

width = 640; lon_0 = 270; lat_0 = 80
pixelPerRadians = 640
height=480
radius = pixelPerRadians

max_length = 0

cam = JpegStreamCamera('http://192.168.43.1:8080/videofeed')#640 * 480
mobile = mobileState.mobileState()
while True:
        mobile.checkUpdate()
        if mobile.isToUpdate:
          mobile.computeRPY()
        image = cam.getImage().rotate(-sp.rad2deg(mobile.roll), fixed = False)
        m = Basemap(width=image.width,height=image.height,projection='aeqd',
		    lat_0=sp.rad2deg(mobile.pitch),lon_0=sp.rad2deg(mobile.yaw), rsphere = radius)
	# fill background.
	#m.drawmapboundary(fill_color='aqua')
	# draw coasts and fill continents.
	#m.drawcoastlines(linewidth=0.5)
	#m.fillcontinents(color='coral',lake_color='aqua')
	# 20 degree graticule.
	# m.drawparallels(np.arange(-90,90,30))
	#m.drawmeridians(np.arange(-180,180,30))
	# draw a black dot at the center.
	#xpt, ypt = m(heading_deg, elevation_deg)
	#m.plot([xpt],[ypt],'ko')
	# draw the title.
	#plt.title('Azimuthal Equidistant Projection')
コード例 #23
0
ファイル: simpleTrack.py プロジェクト: traverseda/robokite
 def track(self):
  print "Press right mouse button to pause or play"
  print "Use left mouse button to select target"
  print "Target color must be different from background"
  print "Target must have width larger than height"
  print "Target can be upside down"

  #Parameters
  isUDPConnection = False # Currently switched manually in the code
  display = True
  displayDebug = True
  useBasemap = False
  maxRelativeMotionPerFrame = 2 # How much the target can moved between two succesive frames
  pixelPerRadians = 320
  radius = pixelPerRadians
  referenceImage = '../ObjectTracking/kite_detail.jpg'
  scaleFactor = 0.5
  isVirtualCamera = True
  useHDF5 = False

  # Open reference image: this is used at initlalisation
  target_detail = Image(referenceImage)

  # Get RGB color palette of target (was found to work better than using hue)
  pal = target_detail.getPalette(bins = 2, hue = False)

  # Open video to analyse or live stream
  #cam = JpegStreamCamera('http://192.168.1.29:8080/videofeed')#640 * 480
  if isVirtualCamera:
    #cam = VirtualCamera('../../zenith-wind-power-read-only/KiteControl-Qt/videos/kiteFlying.avi','video')
    #cam = VirtualCamera('/media/bat/DATA/Baptiste/Nautilab/kite_project/robokite/ObjectTracking/00095.MTS', 'video')
    #cam = VirtualCamera('output.avi', 'video')
    cam = VirtualCamera('../Recording/Videos/Flying kite images (for kite steering unit development)-YTMgX1bvrTo.flv','video')
    virtualCameraFPS = 25
  else:
    cam = JpegStreamCamera('http://192.168.43.1:8080/videofeed')#640 * 480
    #cam = Camera() 

  # Get a sample image to initialize the display at the same size
  img = cam.getImage().scale(scaleFactor)
  print img.width, img.height
  # Create a pygame display
  if display:
   if img.width>img.height:
     disp = Display((27*640/10,25*400/10))#(int(2*img.width/scaleFactor), int(2*img.height/scaleFactor)))
   else:
     disp = Display((810,1080))
  #js = JpegStreamer()



  # Initialize variables
  previous_angle = 0 # target has to be upright when starting. Target width has to be larger than target heigth.
  previous_coord_px = (0, 0) # Initialized to top left corner, which always exists
  previous_dCoord = previous_coord_px
  previous_dAngle = previous_angle
  angles = []
  coords_px = []
  coord_px = [0, 0]
  angle = 0
  target_elevations = []
  target_bearings = []
  times = []
  wasTargetFoundInPreviousFrame = False
  i_frame = 0
  isPaused = False
  selectionInProgress = False
  th = [100, 100, 100]
  skycolor = Color.BLUE
  timeLastTarget = 0

  # Prepare recording
  recordFilename = datetime.datetime.utcnow().strftime("%Y%m%d_%Hh%M_")+ 'simpleTrack'
  if useHDF5:
    try:
      os.remove(recordFilename + '.hdf5') 
    except:
      print('Creating file ' + recordFilename + '.hdf5')
    """ The following line is used to silence the following error (according to http://stackoverflow.com/questions/15117128/h5py-in-memory-file-and-multiprocessing-error)
    #000: ../../../src/H5F.c line 1526 in H5Fopen(): unable to open file
    major: File accessability
    minor: Unable to open file"""
    h5py._errors.silence_errors()
    recordFile = h5py.File(recordFilename + '.hdf5', 'a') 
    hdfSize = 0    
    dset = recordFile.create_dataset('kite', (2,2), maxshape=(None,7))
    imset = recordFile.create_dataset('image', (2,img.width,img.height,3 ), maxshape=(None, img.width, img.height, 3))
  else:
    try:
      os.remove(recordFilename + '.csv')   
    except:
      print('Creating file ' + recordFilename + '.csv') 
    recordFile = file(recordFilename + '.csv', 'a')
    csv_writer = csv.writer(recordFile)
    csv_writer.writerow(['Time (s)', 'x (px)', 'y (px)', 'Orientation (rad)', 'Elevation (rad)', 'Bearing (rad)', 'ROT (rad/s)'])

  # Launch a thread to get UDP message with orientation of the camera
  mobile = mobileState.mobileState()
  if isUDPConnection:
   a = threading.Thread(None, mobileState.mobileState.checkUpdate, None, (mobile,))
   a.start()

  # Loop while not canceled by user
  t0 = time.time()
  previousTime = t0
  while not(display) or disp.isNotDone():
    t = time.time()
    deltaT = (t-previousTime)
    FPS = 1.0/deltaT
    #print 'FPS =', FPS
    if isVirtualCamera:
      deltaT = 1.0/virtualCameraFPS
    previousTime = t
    i_frame = i_frame + 1
    timestamp = datetime.datetime.utcnow()

    # Receive orientation of the camera
    if isUDPConnection:
      mobile.computeRPY([2, 0, 1], [-1, 1, 1])
    ctm = np.array([[sp.cos(mobile.roll), -sp.sin(mobile.roll)], \
            [sp.sin(mobile.roll), sp.cos(mobile.roll)]]) # Coordinate transform matrix

    if useBasemap:
    # Warning this really slows down the computation
      m = Basemap(width=img.width, height=img.height, projection='aeqd',
            lat_0=sp.rad2deg(mobile.pitch), lon_0=sp.rad2deg(mobile.yaw), rsphere = radius)

    # Get an image from camera
    if not isPaused:
      img = cam.getImage()
      img = img.resize(int(scaleFactor*img.width), int(scaleFactor*img.height))
    
    if display:
      # Pause image when right button is pressed
      dwn = disp.rightButtonDownPosition()
      if dwn is not None:
        isPaused = not(isPaused)
        dwn = None

    if display:
    # Create a layer to enable user to make a selection of the target
      selectionLayer = DrawingLayer((img.width, img.height))

    if img:
      if display: 
      # Create a new layer to host information retrieved from video
        layer = DrawingLayer((img.width, img.height))
          # Selection is a rectangle drawn while holding mouse left button down
        if disp.leftButtonDown:
          corner1 = (disp.mouseX, disp.mouseY)
          selectionInProgress = True
        if selectionInProgress:
          corner2 = (disp.mouseX, disp.mouseY)
          bb = disp.pointsToBoundingBox(corner1, corner2)# Display the temporary selection
          if disp.leftButtonUp: # User has finished is selection
            selectionInProgress = False
            selection = img.crop(bb[0], bb[1], bb[2], bb[3])
            if selection != None:
                    # The 3 main colors in the area selected are considered.
            # Note that the selection should be included in the target and not contain background
              try:
                selection.save('../ObjectTracking/'+ 'kite_detail_tmp.jpg')
                img0 = Image("kite_detail_tmp.jpg") # For unknown reason I have to reload the image...
                pal = img0.getPalette(bins = 2, hue = False)
              except: # getPalette is sometimes bugging and raising LinalgError because matrix not positive definite
                pal = pal
              wasTargetFoundInPreviousFrame = False
              previous_coord_px = (bb[0] + bb[2]/2, bb[1] + bb[3]/2)
          if corner1 != corner2:
            selectionLayer.rectangle((bb[0], bb[1]), (bb[2], bb[3]), width = 5, color = Color.YELLOW)
                       
   
      # If the target was already found, we can save computation time by
      # reducing the Region Of Interest around predicted position
      if wasTargetFoundInPreviousFrame:
        ROITopLeftCorner = (max(0, previous_coord_px[0]-maxRelativeMotionPerFrame/2*width), \
                  max(0, previous_coord_px[1] -height*maxRelativeMotionPerFrame/2))
        ROI = img.crop(ROITopLeftCorner[0], ROITopLeftCorner[1],                          \
                             maxRelativeMotionPerFrame*width, maxRelativeMotionPerFrame*height, \
                 centered = False)
        if display :
      # Draw the rectangle corresponding to the ROI on the complete image
          layer.rectangle((previous_coord_px[0]-maxRelativeMotionPerFrame/2*width,  \
                                   previous_coord_px[1]-maxRelativeMotionPerFrame/2*height), \
                                (maxRelativeMotionPerFrame*width, maxRelativeMotionPerFrame*height), \
                 color = Color.GREEN, width = 2)
      else:
        # Search on the whole image if no clue of where is the target
        ROITopLeftCorner = (0, 0)
        ROI = img

        '''#Option 1
        target_part0 = ROI.hueDistance(color=(142,50,65)).invert().threshold(150)
        target_part1 = ROI.hueDistance(color=(93,16,28)).invert().threshold(150)
        target_part2 = ROI.hueDistance(color=(223,135,170)).invert().threshold(150)
        target_raw_img = target_part0+target_part1+target_part2
        target_img = target_raw_img.erode(5).dilate(5)

        #Option 2
        target_img = ROI.hueDistance(imgModel.getPixel(10,10)).binarize().invert().erode(2).dilate(2)'''
    
          # Find sky color
      sky = (img-img.binarize()).findBlobs(minsize=10000)
      if sky:
       skycolor = sky[0].meanColor()
      # Option 3
      target_img = ROI-ROI # Black image
              
      # Loop through palette of target colors
      if display and displayDebug:
            decomposition = []
      i_col = 0
      for col in pal: 
        c = tuple([int(col[i]) for i in range(0,3)])
            # Search the target based on color
        ROI.save('../ObjectTracking/'+ 'ROI_tmp.jpg')
        img1 = Image('../ObjectTracking/'+ 'ROI_tmp.jpg')
        filter_img = img1.colorDistance(color = c)
        h = filter_img.histogram(numbins=256)
        cs = np.cumsum(h)
        thmax = np.argmin(abs(cs- 0.02*img.width*img.height)) # find the threshold to have 10% of the pixel in the expected color
        thmin = np.argmin(abs(cs- 0.005*img.width*img.height)) # find the threshold to have 10% of the pixel in the expected color
        if thmin==thmax:
          newth = thmin
        else:
          newth = np.argmin(h[thmin:thmax]) + thmin
        alpha = 0.5
        th[i_col] = alpha*th[i_col]+(1-alpha)*newth
        filter_img = filter_img.threshold(max(40,min(200,th[i_col]))).invert()
        target_img = target_img + filter_img
        #print th
        i_col = i_col + 1
        if display and displayDebug:
          [R, G, B] = filter_img.splitChannels()
          white = (R-R).invert()
          r = R*1.0/255*c[0]
          g = G*1.0/255*c[1]
          b = B*1.0/255*c[2]
          tmp = white.mergeChannels(r, g, b)
          decomposition.append(tmp)

      # Get a black background with with white target foreground
      target_img = target_img.threshold(150)
  
      target_img = target_img - ROI.colorDistance(color = skycolor).threshold(80).invert()

      if display and displayDebug:
        small_ini = target_img.resize(int(img.width/(len(pal)+1)),  int(img.height/(len(pal)+1)))
        for tmp in decomposition:
          small_ini = small_ini.sideBySide(tmp.resize(int(img.width/(len(pal)+1)), int(img.height/(len(pal)+1))), side = 'bottom')
        small_ini = small_ini.adaptiveScale((int(img.width), int(img.height)))
        toDisplay = img.sideBySide(small_ini)
      else:
        toDisplay = img
          #target_img = ROI.hueDistance(color = Color.RED).threshold(10).invert()

      # Search for binary large objects representing potential target
      target = target_img.findBlobs(minsize = 500)
      
      if target: # If a target was found
      
        if wasTargetFoundInPreviousFrame:
          predictedTargetPosition = (width*maxRelativeMotionPerFrame/2, height*maxRelativeMotionPerFrame/2) # Target will most likely be close to the center of the ROI   
        else:
          predictedTargetPosition = previous_coord_px
              # If there are several targets in the image, take the one which is the closest of the predicted position
        target = target.sortDistance(predictedTargetPosition)

        # Get target coordinates according to minimal bounding rectangle or centroid.
        coordMinRect = ROITopLeftCorner + np.array((target[0].minRectX(), target[0].minRectY()))
        coord_px = ROITopLeftCorner + np.array(target[0].centroid())

        # Rotate the coordinates of roll angle around the middle of the screen
        rot_coord_px = np.dot(ctm, coord_px - np.array([img.width/2, img.height/2])) + np.array([img.width/2, img.height/2])
        if useBasemap:
          coord = sp.deg2rad(m(rot_coord_px[0], img.height-rot_coord_px[1], inverse = True))
        else:
          coord = localProjection(rot_coord_px[0]-img.width/2, img.height/2-rot_coord_px[1], radius, mobile.yaw, mobile.pitch, inverse = True)
        target_bearing, target_elevation = coord

      # Get minimum bounding rectangle for display purpose
        minR = ROITopLeftCorner + np.array(target[0].minRect())

        contours = target[0].contour()

        contours = [ ROITopLeftCorner + np.array(contour) for contour in contours]


  
        # Get target features
        angle = sp.deg2rad(target[0].angle()) + mobile.roll
        angle =  sp.deg2rad(unwrap180(sp.rad2deg(angle), sp.rad2deg(previous_angle)))
        width = target[0].width()
        height = target[0].height()

        # Check if the kite is upside down
        # First rotate the kite
        ctm2 = np.array([[sp.cos(-angle+mobile.roll), -sp.sin(-angle+mobile.roll)], \
            [sp.sin(-angle+mobile.roll), sp.cos(-angle+mobile.roll)]]) # Coordinate transform matrix
        rotated_contours = [np.dot(ctm2, contour-coordMinRect) for contour in contours]  
        y = [-tmp[1] for tmp in rotated_contours]
        itop = np.argmax(y) # Then looks at the points at the top
        ibottom = np.argmin(y) # and the point at the bottom
        # The point the most excentered is at the bottom
        if abs(rotated_contours[itop][0])>abs(rotated_contours[ibottom][0]):
          isInverted = True
        else:
          isInverted = False    
        
        if isInverted:
            angle = angle + sp.pi    

        
                # Filter the data
        alpha = 1-sp.exp(-deltaT/self.filterTimeConstant)
        if not(isPaused):
          dCoord = np.array(previous_dCoord)*(1-alpha) + alpha*(np.array(coord_px) - previous_coord_px) # related to the speed only if cam is fixed
          dAngle = np.array(previous_dAngle)*(1-alpha) + alpha*(np.array(angle) - previous_angle)
        else : 
          dCoord = np.array([0, 0])
          dAngle = np.array([0]) 
#print coord_px, angle, width, height, dCoord
    
        # Record important data
        times.append(timestamp)
        coords_px.append(coord_px)
        angles.append(angle)
        target_elevations.append(target_elevation)
        target_bearings.append(target_bearing)
        
        # Export data to controller
        self.elevation = target_elevation
        self.bearing = target_bearing
        self.orientation = angle
        dt = time.time()-timeLastTarget
        self.ROT = dAngle/dt
        self.lastUpdateTime = t
        
        # Save for initialisation of next step
        previous_dCoord = dCoord
        previous_angle = angle
        previous_coord_px = (int(coord_px[0]), int(coord_px[1]))
        wasTargetFoundInPreviousFrame = True
        timeLastTarget = time.time()
      
      else:
        wasTargetFoundInPreviousFrame = False
        
      if useHDF5:
        hdfSize = hdfSize+1
        dset.resize((hdfSize, 7))
        imset.resize((hdfSize, img.width, img.height, 3))
        dset[hdfSize-1,:] = [time.time(), coord_px[0], coord_px[1], angle, self.elevation, self.bearing, self.ROT]
        imset[hdfSize-1,:,:,:] = img.getNumpy()
        recordFile.flush()
      else:
        csv_writer.writerow([time.time(), coord_px[0], coord_px[1], angle, self.elevation, self.bearing, self.ROT])



      if display :
        if target:
        # Add target features to layer
        # Minimal rectange and its center in RED
          layer.polygon(minR[(0, 1, 3, 2), :], color = Color.RED, width = 5)
          layer.circle((int(coordMinRect[0]), int(coordMinRect[1])), 10, filled = True, color = Color.RED)
        
                # Target contour and centroid in BLUE
          layer.circle((int(coord_px[0]), int(coord_px[1])), 10, filled = True, color = Color.BLUE)
          layer.polygon(contours, color = Color.BLUE, width = 5)

        # Speed vector in BLACK
          layer.line((int(coord_px[0]), int(coord_px[1])), (int(coord_px[0]+20*dCoord[0]), int(coord_px[1]+20*dCoord[1])), width = 3)
        
        # Line giving angle
          layer.line((int(coord_px[0]+200*sp.cos(angle)), int(coord_px[1]+200*sp.sin(angle))), (int(coord_px[0]-200*sp.cos(angle)), int(coord_px[1]-200*sp.sin(angle))), color = Color.RED)

        # Line giving rate of turn
        #layer.line((int(coord_px[0]+200*sp.cos(angle+dAngle*10)), int(coord_px[1]+200*sp.sin(angle+dAngle*10))), (int(coord_px[0]-200*sp.cos(angle + dAngle*10)), int(coord_px[1]-200*sp.sin(angle+dAngle*10))))
            
      # Add the layer to the raw image 
        toDisplay.addDrawingLayer(layer)
        toDisplay.addDrawingLayer(selectionLayer)

      # Add time metadata
        toDisplay.drawText(str(i_frame)+" "+ str(timestamp), x=0, y=0, fontsize=20)

      # Add Line giving horizon
          #layer.line((0, int(img.height/2 + mobile.pitch*pixelPerRadians)),(img.width, int(img.height/2 + mobile.pitch*pixelPerRadians)), width = 3, color = Color.RED)

      # Plot parallels
        for lat in range(-90, 90, 15):
          r = range(0, 361, 10)
          if useBasemap:
            # \todo improve for high roll
            l = m (r, [lat]*len(r))
            pix = [np.array(l[0]), img.height-np.array(l[1])]
          else:
            l = localProjection(sp.deg2rad(r), \
                    sp.deg2rad([lat]*len(r)), \
                    radius, \
                    lon_0 = mobile.yaw, \
                    lat_0 = mobile.pitch, \
                    inverse = False)
            l = np.dot(ctm, l)
            pix = [np.array(l[0])+img.width/2, img.height/2-np.array(l[1])]

          for i in range(len(r)-1):
            if isPixelInImage((pix[0][i],pix[1][i]), img) or isPixelInImage((pix[0][i+1],pix[1][i+1]), img):
              layer.line((pix[0][i],pix[1][i]), (pix[0][i+1], pix[1][i+1]), color=Color.WHITE, width = 2)

      # Plot meridians
        for lon in range(0, 360, 15):
          r = range(-90, 91, 10)
          if useBasemap:
        # \todo improve for high roll
            l = m ([lon]*len(r), r)
            pix = [np.array(l[0]), img.height-np.array(l[1])]
          else:
            l= localProjection(sp.deg2rad([lon]*len(r)), \
                    sp.deg2rad(r), \
                    radius, \
                    lon_0 = mobile.yaw, \
                    lat_0 = mobile.pitch, \
                    inverse = False)
            l = np.dot(ctm, l)
            pix = [np.array(l[0])+img.width/2, img.height/2-np.array(l[1])]

          for i in range(len(r)-1):
            if isPixelInImage((pix[0][i],pix[1][i]), img) or isPixelInImage((pix[0][i+1],pix[1][i+1]), img):
              layer.line((pix[0][i],pix[1][i]), (pix[0][i+1], pix[1][i+1]), color=Color.WHITE, width = 2)

      # Text giving bearing
      # \todo improve for high roll
        for bearing_deg in range(0, 360, 30):
          l = localProjection(sp.deg2rad(bearing_deg), sp.deg2rad(0), radius, lon_0 = mobile.yaw, lat_0 = mobile.pitch, inverse = False)
          l = np.dot(ctm, l)
          layer.text(str(bearing_deg), ( img.width/2+int(l[0]), img.height-20), color = Color.RED)

      # Text giving elevation
      # \todo improve for high roll
        for elevation_deg in range(-60, 91, 30):
          l = localProjection(0, sp.deg2rad(elevation_deg), radius, lon_0 = mobile.yaw, lat_0 = mobile.pitch, inverse = False)
          l = np.dot(ctm, l)
          layer.text(str(elevation_deg), ( img.width/2 ,img.height/2-int(l[1])), color = Color.RED)

        #toDisplay.save(js)
        toDisplay.save(disp)
    if display : 
      toDisplay.removeDrawingLayer(1)
      toDisplay.removeDrawingLayer(0)
  recordFile.close()
コード例 #24
0
ファイル: bm29.py プロジェクト: tschoonj/PrestoPronto
 def bm29A(self):
     """define an A attribute with monochromator angle position
         corrisponding to each energy point of the spectra """
     self.A = scipy.rad2deg(
         scipy.arcsin((1.23984E-6 / (self.E)) * 1E10 / (2 * self.dspac)))
コード例 #25
0
# Relative error function.
def rel_err(get, expect):
    a = euclidean(get, expect)
    b = norm(expect)
    if b == 0:
        return a
    else:
        return a/b

sphere = WGS84_ASPHERE_RADIANS
ellipsoid = WGS84_ELLIPSOID_RADIANS
ellipsoid_deg = WGS84_ELLIPSOID
lam = pi/3
phi = pi/5
lam_deg, phi_deg = rad2deg([lam, phi])
# Mercator projection:
merc = Proj(ellipsoid=sphere, proj='merc') 
# Lambert cylindrical equal area projection:
cea = Proj(ellipsoid=sphere, proj='cea') 
cea_e = Proj(ellipsoid=ellipsoid, proj='cea')
cea_ed = Proj(ellipsoid=ellipsoid_deg, proj='cea')

class MyTestCase(unittest.TestCase):
    def setUp(self):
        pass
        
    def test_fff_coeffs(self):
        epsilon = 10e-4

        E, F, G = fff_coeffs(merc, lam, phi)
コード例 #26
0
ファイル: bm29.py プロジェクト: tschoonj/PrestoPronto
 def bm29A(self):
         """define an A attribute with monochromator angle position
         corrisponding to each energy point of the spectra """
         self.A = scipy.rad2deg(scipy.arcsin((1.23984E-6/(self.E))*1E10/(2*self.dspac)))
コード例 #27
0
ファイル: xyzfield.py プロジェクト: josecper/geofieldpy
def xyzcontour(
    theta,
    phi,
    x,
    y,
    z,
    vmin=None,
    vmax=None,
    cmap="bwr",
    projection="robin",
    mode="xyz",
    units="nT",
    time=None,
    string="{0}",
    regular=True,
    resolution=200,
):

    """
    plots scalar fields x,y,z in a world map.

    options:
    · vmin,vmax : maximum and minimum color scale limits. if set to None, they will be automatically chosen so as to cover the entire data range + be symmetric around zero.
    · cmap : matplotlib colormap to use
    · projection : map projection. currently only cylindrical equirectangular ("cyl") and robinson ("robin") projections are supported.
    · mode: toggles between plotting components normally ("xyz") and treating the last one as an intensity ("dif"), not very polished yet
    · units: just the colorbar label
    · time: time for title format string
    · string: format string, where argument {0} is X,Y,Z and argument {1} is str(time)
    · regular: whether input coordinates are a regular grid (True, i.e. are vectors of coordinates of shape (n,) (m,) and x,y,z are arrays of shape (n,m), or they are just a set of points (False, i.e. coordinates are of shape (n,) (n,) and x,y,z are arrays of shape (n,)). If set to False, a regular grid (latitude x longitude) will be constructed before plotting, which will be S L O W ~ A S ~ H E C K.
    · resolution: resolution for the regular grid constructed when input is not regular. Default is 200x200 points.
    """
    from matplotlib import pyplot, colors
    from mpl_toolkits.basemap import Basemap

    if projection == "cyl":
        base = Basemap(
            projection="cyl",
            llcrnrlat=90 - scipy.rad2deg(max(theta)),
            urcrnrlat=90 - scipy.rad2deg(min(theta)),
            llcrnrlon=scipy.rad2deg(min(phi)),
            urcrnrlon=scipy.rad2deg(max(phi)),
            # llcrnrlat=-90, urcrnrlat=90,llcrnrlon=-180,urcrnrlon=180,
            resolution="l",
        )
    elif projection == "robin":
        base = Basemap(projection="robin", lon_0=0.0)
    else:
        raise Exception("bad projection :'(")

    if not regular:

        phinew = scipy.linspace(-numpy.pi, numpy.pi, resolution)
        thetanew = scipy.linspace(0.01, numpy.pi - 0.01, resolution)

        thetagrid, phigrid = scipy.meshgrid(thetanew, phinew, indexing="xy")

        x = scipy.interpolate.griddata((theta, phi), x, (thetagrid, phigrid), method="linear")
        y = scipy.interpolate.griddata((theta, phi), y, (thetagrid, phigrid), method="linear")
        z = scipy.interpolate.griddata((theta, phi), z, (thetagrid, phigrid), method="linear")

        x[numpy.isnan(x)] = 0.0
        y[numpy.isnan(y)] = 0.0
        z[numpy.isnan(z)] = 0.0

        phi = phinew
        theta = thetanew

    xtrans = numpy.rad2deg(phi)
    ytrans = 90 - numpy.rad2deg(theta)

    fig = pyplot.figure(figsize=(10, 13))
    axis1 = fig.add_subplot(311)
    axis1.set_title(string.format("X", str(time)))
    axis2 = fig.add_subplot(312)
    axis2.set_title(string.format("Y", str(time)))
    axis3 = fig.add_subplot(313)
    axis3.set_title(string.format("Z", str(time)))

    for a in (axis1, axis2, axis3):
        base.drawcoastlines(ax=a)
        base.drawparallels(numpy.arange(-60.0, 90.0, 30.0), ax=a)
        base.drawmeridians(numpy.arange(0.0, 420.0, 60.0), labels=[0, 0, 0, 1], fontsize=10, ax=a)
        base.drawmapboundary(ax=a)

    if mode == "dif":
        xycmap = colors.LinearSegmentedColormap(
            "crisisperrotini",
            segmentdata={
                "red": [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (0.75, 1.0, 1.0), (1.0, 0.0, 0.0)],
                "green": [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 0.0, 0.0)],
                "blue": [(0.0, 0.0, 0.0), (0.25, 1.0, 1.0), (0.5, 1.0, 1.0), (1.0, 0.0, 0.0)],
            },
        )
        zcmap = cmap
    else:
        xycmap = zcmap = cmap

    xx, yy = numpy.meshgrid(xtrans, ytrans)

    if not vmin or not vmax:
        xmax = numpy.max(numpy.abs(x))
        ymax = numpy.max(numpy.abs(y))
        zmax = numpy.max(numpy.abs(z))
        m = base.contourf(xx, yy, x.transpose(), 31, latlon=True, ax=axis1, vmin=-xmax, vmax=xmax, cmap=xycmap)
        cbar = base.colorbar(mappable=m, ax=axis1)
        cbar.set_label(units)
        m = base.contourf(xx, yy, y.transpose(), 31, latlon=True, ax=axis2, vmin=-ymax, vmax=ymax, cmap=xycmap)
        cbar = base.colorbar(mappable=m, ax=axis2)
        cbar.set_label(units)
        m = base.contourf(xx, yy, z.transpose(), 31, latlon=True, ax=axis3, vmin=-zmax, vmax=zmax, cmap=zcmap)
        cbar = base.colorbar(mappable=m, ax=axis3)
        cbar.set_label(units)
    else:
        base.contourf(xx, yy, x.transpose(), 31, latlon=True, ax=axis1, vmin=vmin, vmax=vmax, cmap=xycmap)
        base.contourf(xx, yy, y.transpose(), 31, latlon=True, ax=axis2, vmin=vmin, vmax=vmax, cmap=xycmap)
        base.contourf(xx, yy, z.transpose(), 31, latlon=True, ax=axis3, vmin=vmin, vmax=vmax, cmap=zcmap)

    return fig
コード例 #28
0
    a = euclidean(get, expect)
    b = norm(expect)
    if b == 0:
        return a
    else:
        return a/b

# Define lon-lat input points to test.     
RADIANS = False  # Work in radians (True) or degrees (False)?
if RADIANS:
    PI = pi
else:
    PI = 180   
phi_0 = arcsin(2.0/3)
if not RADIANS:
    phi_0 = rad2deg(phi_0)
a = (0, PI/3)
b = (0, -PI/3)      
inputs = [
    (0, 0), 
    (0, phi_0), 
    (0, -phi_0), 
    (PI/2, 0), 
    (-PI/2, 0), 
    (-PI, 0),
    (-PI, PI/2), 
    (-PI, -PI/2), 
    a, 
    b,
]
コード例 #29
0
def xyz2llz(x, y, z):
    """
   convert earth-centered, earth-fixed (ECEF) cartesian x, y, z to latitude, longitude, and altitude 

   code is based on:

   https://www.mathworks.com/matlabcentral/fileexchange/7941-convert-cartesian--ecef--coordinates-to-lat--lon--alt?focused=5062924&tab=function

    Parameters
    ----------
    x: float
       x-coordinate  normalized to the radius of Earh
    y: float
       y-coordinate  normalized to the radius of Earh
    z: float
       z-coordinate  normalized to the radius of Earh

    Returns
    -------
    lat: float
       latitude (deg)
    lon: float
       longitude (deg)
    depth: float
       depth (km)
   """
    import numpy as np
    import math
    from scipy import deg2rad, rad2deg

    # World Geodetic System 1984
    # WGS 84
    #
    erad = np.float64(
        6378137.0)  # Radius of the Earth in meters (equatorial radius, WGS84)
    rad = 1  # sphere radius
    e = np.float64(8.1819190842622e-2)

    # convert to radius
    x = x * erad / rad
    y = y * erad / rad
    z = z * erad / rad

    b = np.sqrt(erad * erad * (1 - e * e))
    ep = np.sqrt((erad * erad - b * b) / (b * b))
    p = np.sqrt(x * x + y * y)
    th = np.arctan2(erad * z, b * p)
    lon = np.arctan2(y, x)
    lat = np.arctan2((z + ep * ep * b * np.sin(th) * np.sin(th) * np.sin(th)),
                     (p - e * e * erad * np.cos(th) * np.cos(th) * np.cos(th)))
    N = erad / np.sqrt(1.0 - e * e * np.sin(lat) * np.sin(lat))
    alt = p / np.cos(lat) - N

    lon = lon % (math.pi * 2.0)
    lon = rad2deg(lon)
    if lon > 180.0:
        lon -= 360.0
    lat = rad2deg(lat)
    alt = -1 * (alt) / 1000.0  # depth as negative alt

    return lat, lon, alt
コード例 #30
0
def purcell_filling_angle(physics, phase, network, r_toroid,
                          surface_tension='pore.surface_tension',
                          contact_angle='pore.contact_angle',
                          diameter='throat.diameter',
                          Pc=1e3,
                          **kwargs):
    r"""
    Calculate the filling angle (alpha) for a given capillary pressure

    Parameters
    ----------
    network : OpenPNM Network Object
        The Network on which to apply the calculation
    sigma : dict key (string)
        The dictionary key containing the surface tension values to be used. If
        a pore property is given, it is interpolated to a throat list.
    theta : dict key (string)
        The dictionary key containing the contact angle values to be used. If
        a pore property is given, it is interpolated to a throat list.
    throat_diameter : dict key (string)
        The dictionary key containing the throat diameter values to be used.
    r_toroid : float or array_like
        The radius of the toroid surrounding the pore

    Notes
    -----
    This approach accounts for the converging-diverging nature of many throat
    types.  Advancing the meniscus beyond the apex of the toroid requires an
    increase in capillary pressure beyond that for a cylindical tube of the
    same radius. The details of this equation are described by Mason and
    Morrow [1]_, and explored by Gostick [2]_ in the context of a pore network
    model.

    !!! Takes mean contact angle and surface tension !!!

    """
    from scipy import ndimage
    entity = diameter.split('.')[0]
    if surface_tension.split('.')[0] == 'pore' and entity == 'throat':
        sigma = phase[surface_tension]
        sigma = phase.interpolate_data(data=sigma)
    else:
        sigma = phase[surface_tension]
    if contact_angle.split('.')[0] == 'pore' and entity == 'throat':
        theta = phase[contact_angle]
        theta = phase.interpolate_data(data=theta)
    else:
        theta = phase[contact_angle]
    # Mason and Morrow have the definitions switched
    theta = 180 - theta
    theta = _sp.deg2rad(theta)
    rt = network[diameter]/2
    R = r_toroid
    ratios = rt/R
    a_max = theta - np.arcsin((np.sin(theta))/(1 + ratios))

    def purcell_pressure(ratio, fill_angle, theta, sigma, R):
        # Helper function
        a_max = theta - np.arcsin((np.sin(theta))/(1+ratio))
        fill_angle[fill_angle > a_max] = a_max
        r_men = R*(1+(ratio)-_sp.cos(fill_angle))/_sp.cos(theta-fill_angle)
        Pc = 2*sigma/r_men
        return Pc

    fill_angle = _sp.deg2rad(np.linspace(-30, 150, 1001))

    alpha = np.zeros_like(ratios)
    for T, ratio in enumerate(ratios):
        mask = np.zeros_like(fill_angle, dtype=bool)
        nudge = 100
        all_Pc = purcell_pressure(ratio, fill_angle, theta[T], sigma[T], R)
        if Pc > all_Pc.max():
            # Target Pc out of range
            lowest = fill_angle[np.argwhere(all_Pc == all_Pc.max())[0][0]]
        else:
            while np.sum(mask) == 0:
                plus_mask = all_Pc < Pc + nudge
                minus_mask = all_Pc > Pc - nudge
                mask = np.logical_and(plus_mask, minus_mask)
                if np.sum(mask) == 0:
                    nudge += 10

            regions = ndimage.find_objects(ndimage.label(mask)[0])
            rx = [np.mean(fill_angle[regions[r]]) for r in range(len(regions))]
            root_x = np.asarray(rx)
            lowest = np.min(root_x)
        alpha[T] = lowest

    logger.info('Filling angles calculated for Pc: '+str(Pc))
    physics['throat.alpha_max'] = a_max
    return _sp.rad2deg(alpha)
コード例 #31
0
        for i in range(0, len(DELTA)):
            taxaD = (DELTA[i, 0] - DELTA1[i, 0]) / DELTA[i, 0]
            if abs(taxaD) < Vcorrecao:
                MENSAGEIM1 = "Criterio de convergencia"
                MENSAGEM2 = "Teste convergiu para o teste do vetor das correções"
                break
    DELTA1 = DELTA  # Armazena a variavel para o teste
    #Teste para o vetor atualizado
    maximo = CCE.max()  # busca o maior valor nos fatores de correção
    Mang = max(
        [abs(number) for number in [maximo.omega, maximo.kappa, maximo.phi]])
    Mcoord = max([abs(number) for number in [maximo.X, maximo.Y, maximo.Z]])
    Maps = max([
        abs(number) for number in [maximo.a0, maximo.b0, maximo.b1, maximo.c0]
    ])
    if (Mang < sc.rad2deg(Lang) and Mcoord < Lcoord and Maps < Laps):
        MENSAGEIM1 = "Criterio de convergencia"
        MENSAGEM2 = "Atingiu as correções minimas"
        break
    if iteracao == limite:
        MENSAGEIM1 = "Criterio de convergencia"
        MENSAGEM2 = "Atingiu o limite de iterações"
    contador = contador + 1

# -------------------------- Posteriores --------------------------
# Matriz estatisticas das equações
QXX = inv(N + NC + WXX)  # Matriz cofator dos Parametros
WXX = inv(QXX)  # Matriz peso dos Parametros
QC = ACT.dot(QC.dot(np.transpose(ACT)))  # Matriz cofator das Restrições
WC = inv(QC)  # Matriz peso das Restrições
W = np.array(W).astype(np.float64)
コード例 #32
0
ファイル: mobileState.py プロジェクト: xaviercallens/robokite
    def decodeMessageSensorUDP(self, msg):
        """ This is used to decode message from sensorUDP application from the android market.
    The orientation field was first used, but its conventions were unclear.
    So now acceleration and magnetic vectors should be used"""
        data = msg.split(', ')
        if data[0] == 'G':
            # This is GPS message
            time = decimalstr2float(data[2])
            latitude_deg = decimalstr2float(data[3])
            longitude_deg = decimalstr2float(data[4])
            altitude = decimalstr2float(data[5])
            hdop = decimalstr2float(
                data[7])  # Horizontal dilution of precision
            vdop = decimalstr2float(data[8])  # Vertical dilution of precision
            print time, latitude_deg, longitude_deg, altitude, hdop, vdop
        if data[0] == 'O':
            # \note This is no more used as orientation convention were unclear
            #  'O, 146, 1366575961732, 230,1182404, -075,2031250, 001,7968750'
            [
                u,
                u,  # data not used                                         \    
                heading_deg,  # pointing direction of top of phone                    \ 
                roll_deg,  # around horizontal axis, positive clockwise [-180:180] \   
                pitch_deg
            ] = decimalstr2float(data[1:])  # around vertical axis [_90:90]
            elevation_deg = -sp.rad2deg(sp.arctan2(                     \
                sp.cos(sp.deg2rad(pitch_deg))*sp.cos(sp.deg2rad(roll_deg)),     \
                sp.sqrt(1+sp.cos(sp.deg2rad(roll_deg))**2*(sp.sin(sp.deg2rad(pitch_deg))**2-1)))) #positive up
            inclinaison_deg = pitch_deg  #positive clockwise
            print heading_deg, roll_deg, pitch_deg, elevation_deg, inclinaison_deg
        if data[0] == 'A':
            # Accelerometer data
            # Index and sign are adjusted to obtain x through the screen, and z down
            deltaT = decimalstr2float(data[2]) / 1000 - self.time_acceleration
            if self.filterTimeConstant == 0.0:
                alpha = 1
            else:
                alpha = 1 - sp.exp(-deltaT / self.filterTimeConstant)

            self.time_acceleration = decimalstr2float(data[2]) / 1000
            self.acceleration_raw[0] = decimalstr2float(data[3])
            self.acceleration_raw[1] = decimalstr2float(data[4])
            self.acceleration_raw[2] = decimalstr2float(data[5])
            # Filter the data
            self.acceleration_filtered += alpha * (
                sp.array(self.acceleration_raw) - self.acceleration_filtered)
        if data[0] == 'M':
            # Magnetometer data
            # Index and sign are adjusted to obtain x through the screen, and z down
            deltaT = decimalstr2float(data[2]) / 1000 - self.time_magnetic
            if self.filterTimeConstant == 0.0:
                alpha = 1
            else:
                alpha = 1 - sp.exp(-deltaT / self.filterTimeConstant)

            self.time_magnetic = decimalstr2float(data[2]) / 1000
            self.magnetic_raw[0] = decimalstr2float(data[3])
            self.magnetic_raw[1] = decimalstr2float(data[4])
            self.magnetic_raw[2] = -decimalstr2float(
                data[5])  # Adapt to a bug in sensorUDP?
            # Filter the data
            self.magnetic_filtered += alpha * (sp.array(self.magnetic_raw) -
                                               self.magnetic_filtered)
コード例 #33
0
ファイル: Compute_Parameters.py プロジェクト: mdaal/Make_Mask
def Compute_Coupler(Resonator_ID):
	""" Computes Line coupler length and  Aux coupler length, if an Aux coupler is needed. Uses this to compute Resonator Length (which is length of the meander excluding the coupler).
		Adds resonator and through line Eeff and Port_Z to table of computed parameters"""
	Coupler_Length = 0.0
	Aux_Coupler_Length = 0.0
	_Length = 0.0
	b = beta(Resonator_ID)
	Freq, Design_Q, Geometry = Load_Freq_Q_Geo(Resonator_ID)
	Coupler_Zone = Mask_DB.Get_Mask_Data("SELECT Coupler_Zone FROM Resonators Where resonator_id = " + str(Resonator_ID) ,'one')[0]

	### Coupler Zone shall be greater than a coupler_offset which yields Coupler_Zone_Q_Limit 
	Coupler_Zone_Q_Limit = float(pow(10,10))
	### in general "Coupler Zone Q" is the Q attained using a coupler_offset = coupler_zone 
	
	Sim = Mask_DB.Get_Simulation_Data(Geometry, "CouplerSweep")

	######## Extract  Resonator and Throughline Eeff #####
	Sim.values('Eeff')
	Eeff = sp.absolute(Sim.interp(Freq,Parameter_Value = Sim.Pmax))
	Resonator_Eeff  = Eeff[2]
	Through_Line_Eeff = Eeff[1]

	Sim.values('Port_Z0')
	Port_Z0 = sp.absolute(Sim.interp(Freq,Parameter_Value = Sim.Pmax))
	Resonator_Impedance  = Port_Z0[2]
	Through_Line_Impedance = Port_Z0[1]	
	########
	
	Sim.values('Port_S')
	try:
		offset = Sim.optvalues(Freq,Q2S(Coupler_Zone_Q_Limit),2,0)[0] #May fail if S31 at Sim.Pmax yelds  Q < Coupler_Zone_Q_Limit 
	except:
		offset = Sim.Pmax
		print("Function %s in module %s: For Resonator_ID = %i, insufficient Coupler_Offset in Simulation to attain Coupler Zone Q > %i" % (__name__, __file__,Resonator_ID,Coupler_Zone_Q_Limit))

	if offset > Coupler_Zone:
		print("Function %s in module %s: For Resonator_ID = %i, Coupler_Zone Increased to make Coupler Zone Q closer to %i" % (__name__, __file__,Resonator_ID,Coupler_Zone_Q_Limit))
		offset = Coupler_Zone


	delta_L = Sim.Pmax - Coupler_Zone #is a Length, um
	if delta_L <= 0:
		warnings.warn('Coupler_Zone is greater than Coupler_Offset')
	delta_coupler_phase = -2.0 * b * delta_L #2 is becasue 1/2-wave resonator, phase is  in radians 

	if Design_Q < Sim.Qmin(Freq): #Condition where an Aux is needed.
		Sim = Mask_DB.Get_Simulation_Data(Geometry, "AuxCouplerSweep")
		Sim.values('Port_S')

		Coupler_Length = Coupler_Zone 

		if Design_Q < Sim.Qmin(Freq): #Condition where an Aux at its maximum length it not sufficient
			print("Function %s in module %s: Design_Q is lower than minimum acheivable Q with Pad Coupler for Resonator_ID = %i. Using Max Coupler Pad Length" % (__name__, __file__,Resonator_ID))
			
			####### CAUTION ########
			Design_Q = Sim.Qmin(Freq)
			########################

		Aux_Coupler_Length = Sim.optvalues(Freq,Q2S(Design_Q),2,0)[0]
		_Length = Aux_Coupler_Length
	else:
		Coupler_Length = Sim.optvalues(Freq,Q2S(Design_Q),2,0)[0]
		_Length = Coupler_Length

	
	#compute resonator length
	Coupler_Phase_Change = sp.absolute(sp.angle(Sim.interp(Freq,Parameter_Value = _Length)[2,2], deg = False))  + delta_coupler_phase #radians

	Resonator_Phase_Length = 2.0*sp.pi - Coupler_Phase_Change

	#Note: Computed Resonator Length has been shortened by presence of coupler. phase change of Coupler has been subtracted from vacuum lenght or resonator.
	Resonator_Length = Resonator_Phase_Length/(2*b)

	#This is the "midpoint", as determined by phase  =  pi, along the resonator length where the current is maximal. NOTE: THis is along the meandered portion of the resonator. The couple has been substracted
	Max_Current_Length =  sp.around((Resonator_Phase_Length-sp.pi)/(2*b),decimals=3)

	#print(Sim.Current_Attribute,{"Coupler_Zone" : Coupler_Zone, "Design_Q" : Design_Q, "Aux_Coupler_Length" : Aux_Coupler_Length, "Coupler_Length" : Coupler_Length, "Coupler_Phase_Change" : Coupler_Phase_Change})


	Mask_DB.Update_Computed_Parameters(Resonator_ID, {"Coupler_Zone" : Coupler_Zone, "Design_Q" : Design_Q, "Aux_Coupler_Length" : Aux_Coupler_Length, "Coupler_Length" : Coupler_Length, "Coupler_Phase_Change" : Coupler_Phase_Change, "Resonator_Length" : Resonator_Length,"Resonator_Eeff":Resonator_Eeff, "Through_Line_Eeff":Through_Line_Eeff, "Resonator_Impedance":Resonator_Impedance,"Through_Line_Impedance":Through_Line_Impedance,"Max_Current_Length" : Max_Current_Length} )	
	return (Coupler_Zone,Design_Q,Aux_Coupler_Length,Coupler_Length, sp.rad2deg(Coupler_Phase_Change),Resonator_Length)
コード例 #34
0
lon_0 = 270
lat_0 = 80
pixelPerRadians = 640
height = 480
radius = pixelPerRadians

max_length = 0

cam = JpegStreamCamera('http://192.168.43.1:8080/videofeed')  #640 * 480
mobile = mobileState.mobileState()
mobile.open()
while True:
    mobile.checkUpdate()
    if mobile.isToUpdate:
        mobile.computeRPY()
    image = cam.getImage().rotate(-sp.rad2deg(mobile.roll), fixed=False)
    m = Basemap(width=image.width,
                height=image.height,
                projection='aeqd',
                lat_0=sp.rad2deg(mobile.pitch),
                lon_0=sp.rad2deg(mobile.yaw),
                rsphere=radius)
    # fill background.
    #m.drawmapboundary(fill_color='aqua')
    # draw coasts and fill continents.
    #m.drawcoastlines(linewidth=0.5)
    #m.fillcontinents(color='coral',lake_color='aqua')
    # 20 degree graticule.
    # m.drawparallels(np.arange(-90,90,30))
    #m.drawmeridians(np.arange(-180,180,30))
    # draw a black dot at the center.
コード例 #35
0
def flowprandtlmeyer(**flow):
    """
    Prandtl-Meyer function for expansion waves.
    
    This function accepts a given set of specific heat ratios and
    an input of either Mach number, Mach angle or Prandtl-Meyer angle.
    Inputs can be a single scalar or an array_like data structure.

    Parameters
    ----------
    gamma : array_like, optional
        Specific heat ratio. Values must be greater than 1.
    M : array_like
        Mach number. Values must be greater than or equal to 1.
    nu : array_like
        Prandtl-Meyer angle [degrees]. Values must be
        0 <= M <= 90*(sqrt((g+1)/(g-1))-1).
    mu : array_like
        Mach angle [degrees]. Values must be 0 <= M <= 90.
    
    Returns
    -------
    out : (M, nu, mu)
        Tuple of Mach number, Prandtl-Meyer angle, Mach angle.
    
    Examples
    --------
    >>> flowprandtlmeyer(M=5)
    (5.0, 76.920215508538789, 11.536959032815489)
    """

    #parse the input
    gamma, flow, mtype, itype = _flowinput(flow)

    #calculate gamma-ratios for use in the equations
    l = sp.sqrt((gamma-1)/(gamma+1))

    #preshape mach array
    M = sp.empty(flow.shape, sp.float64)

    #use prandtl-meyer relation to solve for the mach number
    if mtype in ["mach", "m"]:
        if (flow < 1).any():
            raise Exception("Mach number inputs must be real numbers greater" \
                " than or equal to 1.")
        M = flow
    elif mtype in ["mu", "machangle"]:
        if (flow < 0).any() or  (flow > 90).any():
            raise Exception("Mach angle inputs must be real numbers" \
                " 0 <= M <= 90.")
        M = 1 / sp.sin(sp.deg2rad(flow))
    elif mtype in ["nu", "pm", "pmangle"]:
        if (flow < 0).any() or  (flow > 90*((1/l)-1)).any():
            raise Exception("Prandtl-Meyer angle inputs must be real" \
                " numbers 0 <= M <= 90*(sqrt((g+1)/(g-1))-1).")
        M[:] = 2 #initial guess for the solution
        for _ in xrange(_AETB_iternum):
            b = sp.sqrt(M**2 - 1)
            f = -sp.deg2rad(flow) + (1/l) * sp.arctan(l*b) - sp.arctan(b)
            g = b*(1 - l**2) / (M*(1 + (l**2)*(b**2))) #derivative
            M = M - (f / g) #Newton-Raphson
    else:
        raise Exception("Keyword input must be an acceptable string to" \
            " select input parameter.")

    #normal shock relations
    b = sp.sqrt(M**2 - 1)
    V = (1/l) * sp.arctan(l*b) - sp.arctan(b)
    U = sp.arcsin(1 / M)

    return from_ndarray(itype, M, sp.rad2deg(V), sp.rad2deg(U))
コード例 #36
0
 def test_healpix_sphere(self):    
     # Sphere parameters.
     R = 5
     # Expected outputs of healpix_sphere() applied to inputs.
     if RADIANS:
         sigma_a = sqrt(3 - 3*sin(a[1]))
     else:
         sigma_a = sqrt(3 - 3*sin(deg2rad(a[1])))
     ha = (pi/4*(1 - sigma_a), pi/4*(2 - sigma_a))  
     hb = (ha[0], -ha[1])
     healpix_sphere_outputs = [
         (0, 0), 
         (0, pi/4), 
         (0, -pi/4), 
         (pi/2, 0), 
         (-pi/2, 0), 
         (-pi, 0),
         (-3*pi/4, pi/2), 
         (-3*pi/4, -pi/2), 
         ha, 
         hb
     ]        
     healpix_sphere_outputs = [tuple(R*array(p)) for p in 
                               healpix_sphere_outputs]       
     
     # Forward projection should be correct on test points.
     f = Proj(proj='healpix', R=R)
     given = inputs
     get = [f(*p, radians=RADIANS) for p in given]
     expect = healpix_sphere_outputs
     # Fuzz to allow for rounding errors:
     error = 1e-12
     print()
     print('='*80)
     print('HEALPix forward projection, sphere with radius R = %s' % R)
     print('input (radians) / expected output (meters) / received output')
     print('='*80)
     for i in range(len(get)):
         print(given[i], expect[i], get[i]) 
         self.assertTrue(rel_err(get[i], expect[i]) < error)
      
     # Inverse of projection of a point p should yield p.
     given = get
     get = [f(*q, radians=RADIANS, inverse=True) for q in given]
     expect = inputs
     print('='*80)
     print('HEALPix inverse projection, sphere with radius R = %s' % R)
     print('input (meters) / expected output (radians) / received output')
     print('='*80)
     for i in range(len(get)):
         print(given[i], expect[i], get[i])         
         self.assertTrue(rel_err(get[i], expect[i]) < error)
         
     # Inverse projection of p below should return longitude of -pi.
     # Previously, it was returning a number slightly less than pi
     # because of a rounding error, which got magnified by
     # wrap_longitude()
     p = R*array((-7*pi/8, 3*pi/8))
     get = f(*p, radians=RADIANS, inverse=True)
     p1 = arcsin(1 - 1.0/12)
     if not RADIANS:
         p1 = rad2deg(p1)
     expect = (-PI, p1)
     self.assertTrue(rel_err(get, expect) < error)
コード例 #37
0
ファイル: beacon_analysis.py プロジェクト: w2naf/digital_rf
def ephem_doponly(maindir, tleoff=10.):
    """
        This function will output a dictionary that can be used to remove the
        frequency offset.

        Args:
            maindir (:obj:'str'): Directory that holds the digital rf and metadata.
            tleoff (:obj:'float'): Offset of the tle from the actual data.

        Returns:
            outdict (dict[str, obj]): Output data dictionary::

                {
                        't': Time in posix,
                        'dop1': Doppler frequency of 150 MHz channel from TLE ,
                        'dop2': Doppler frequency of 400 MHz channel from TLE ,
                }
    """

    #%% Get Ephem info
    # Assuming this will stay the same
    ut0 = 25567.5
    e2p = 3600. * 24  #ephem day to utc seconds

    sitepath = os.path.expanduser(os.path.join(maindir,
                                               'metadata/config/site'))
    sitemeta = drf.DigitalMetadataReader(sitepath)
    sdict = sitemeta.read_latest()
    sdict1 = list(sdict.values())[0]

    infopath = os.path.expanduser(os.path.join(maindir, 'metadata/info'))
    infometa = drf.DigitalMetadataReader(infopath)
    idict = infometa.read_latest()
    idict1 = list(idict.values())[0]

    passpath = os.path.expanduser(os.path.join(maindir, 'metadata/pass/'))
    passmeta = drf.DigitalMetadataReader(passpath)
    pdict = passmeta.read_latest()
    pdict1 = list(pdict.values())[0]
    rtime = (pdict1['rise_time'] - ut0) * e2p
    tsave = list(pdict.keys())[0]

    Dop_bw = pdict1['doppler_bandwidth']
    t = sp.arange(0, (Dop_bw.shape[0] + 1) * 10, 10.) + rtime
    t = t.astype(float)

    obsLoc = ephem.Observer()
    obsLoc.lat = sdict1['latitude']
    obsLoc.long = sdict1['longitude']

    satObj = ephem.readtle(idict1['name'], idict1['tle1'][1:-1],
                           idict1['tle2'][1:-1])
    tephem = (t - rtime) * ephem.second + pdict1['rise_time']

    sublat = sp.zeros_like(tephem)
    sublon = sp.zeros_like(tephem)
    for i, itime in enumerate(tephem):
        obsLoc.date = itime
        satObj.compute(obsLoc)
        sublat[i] = sp.rad2deg(satObj.sublat)
        sublon[i] = sp.rad2deg(satObj.sublong)

    # XXX Extend t vector because for the most part the velocities at the edge
    # are not changing much so to avoid having the interpolation extrapolate.
    # If extrapolation used then error messages that the time was off
    t[-1] = t[-1] + 600
    t[-2] = t[-2] + 500
    t[0] = t[0] - 240

    tdop = (t[0:(len(t) - 1)] + t[1:len(t)]) / 2.0
    tdop[0] = tdop[0] - 35.0
    # XXX Used this to line up inital TLE times
    tdop = tdop - tleoff

    tephem = (tdop - rtime) * ephem.second + pdict1['rise_time']

    sublat = sp.zeros_like(tephem)
    sublon = sp.zeros_like(tephem)
    for i, itime in enumerate(tephem):
        obsLoc.date = itime
        satObj.compute(obsLoc)
        sublat[i] = sp.rad2deg(satObj.sublat)
        sublon[i] = sp.rad2deg(satObj.sublong)
    return ({
        "t": t,
        'tsave': tsave,
        "dop1": sp.interpolate.interp1d(tdop, Dop_bw[:, 0], kind="cubic"),
        "dop2": sp.interpolate.interp1d(tdop, Dop_bw[:, 1], kind="cubic"),
        'sublat': sp.interpolate.interp1d(tdop, sublat, kind="cubic"),
        'sublon': sp.interpolate.interp1d(tdop, sublon, kind="cubic"),
        'site_latitude': float(sdict1['latitude']),
        'site_longitude': float(sdict1['longitude'])
    })
コード例 #38
0
ファイル: dbn2latex.py プロジェクト: sergeyplis/gunfolds
def gprint(G, mtype="obs", bend=5, curve=5, R=1, layout=None, scale=5):
    """
    Prints out an automatically layout compressed dbn repesentation of
    the graph in TikZ/Latex format
    """
    output = StringIO.StringIO()
    BE = set()
    n = len(G)
    if not layout:
        g = dict2graph(ecj.cloneBfree(G))
        layout = g.layout_fruchterman_reingold(maxiter=50000, coolexp=1.1)
        #layout = g.layout_graphopt(niter=50000, node_charge=0.08)
        layout.center([0, 0])
        layout.scale(float(1 / scipy.absolute(layout.coords).max()))
        layout.scale(R)
        cc = scipy.round_(array(layout.coords), decimals=4)
    else:
        g = dict2graph(ecj.cloneBfree(G))
        cc = array(layout.coords)
    paintSCC(g, colors)
    for i in range(0, n):
        node = g.vs[i]['label']
        rc = g.vs[i]["color"]
        print >>output, "{ \\definecolor{mycolor}{RGB}{"\
            +str(rc[0])+","+str(rc[1])+","+str(rc[2])+"}"
        mcolor = "fill = {rgb: red,"+str(rc[0])+"; green,"+str(rc[1])+\
            "; blue,"+str(rc[2])+"}"
        print >>output, "\\node["+mtype+", fill=mycolor] ("+node+") at ("+\
            str(cc[i][0])+","+str(cc[i][1])+") {"+node+"};}"

    for i in range(0, n):
        v = g.vs[i]['label']
        ll = [v + '/' + u for u in G[v]]
        for l in ll:
            a, b = l.split('/')
            if G[a][b].intersection([(edge_type['bidirected'], 0)]):
                if not (BE.intersection([(a, b)])
                        or BE.intersection([(b, a)])):
                    print >>output,'  \\draw[pilip, on layer=back] ('+\
                        a+') -- ('+b+');'
            if G[a][b].intersection([(edge_type['directed'], 1)]):
                if a == b:
                    dff = cc[g.vs['label'].index(a)] - scipy.mean(cc, 0)
                    ang = scipy.arctan2(dff[1], dff[0])
                    ang_a = scipy.rad2deg(ang)
                    print >>output,"\\path[overlay,draw,pil] ("+a+")" +\
                        " .. controls +("+ "%.5f" % (bend+ang_a) +\
                        ":"+ fstr % (2*curve)+"mm) and +("+\
                        "%.5f" % (ang_a-bend)+\
                        ":"+"%.5f" % (2*curve)+"mm) .. ("+b+");"
                else:
                    dff = cc[g.vs['label'].index(b)] \
                        - cc[g.vs['label'].index(a)]
                    ang = scipy.arctan2(dff[1], dff[0])
                    ang_a = scipy.rad2deg(ang)
                    ang_b = ang_a + 180
                    print >>output,"\\path[overlay,draw,pil] ("+a+")" +\
                        " .. controls +("+\
                        "%.5f" % (bend+ang_a) +\
                        ":"+fstr % (curve)+"mm) and +("+\
                        fstr % (ang_b-bend)+\
                        ":"+fstr % (curve)+"mm) .. ("+b+");"
    return output
コード例 #39
0
    b = norm(expect)
    if b == 0:
        return a
    else:
        return a / b


# Define lon-lat input points to test.
RADIANS = False  # Work in radians (True) or degrees (False)?
if RADIANS:
    PI = pi
else:
    PI = 180
phi_0 = arcsin(2.0 / 3)
if not RADIANS:
    phi_0 = rad2deg(phi_0)
a = (0, PI / 3)
b = (0, -PI / 3)
inputs = [
    (0, 0),
    (0, phi_0),
    (0, -phi_0),
    (PI / 2, 0),
    (-PI / 2, 0),
    (-PI, 0),
    (-PI, PI / 2),
    (-PI, -PI / 2),
    a,
    b,
]
コード例 #40
0
for in_data_file, param in data_file_dict.items():

    fignum = param['fignum']
    plt.figure(fignum, figsize=(10, 7))

    with open(in_data_file, 'rb') as f:
        data_list = pickle.load(f)

    for i, data in enumerate(data_list):
        angle = data['angle']
        velocity = data['velocity']
        cum_density = data['cum_density']
        print('{}/{}: velocity = {:0.2f}'.format(i + 1, len(data_list),
                                                 velocity))

        # Transform to degrees for plotting
        angle_deg = scipy.rad2deg(angle)
        cum_density_deg = cum_density / scipy.rad2deg(1)

        plt.plot(scipy.rad2deg(angle_deg), cum_density_deg, 'b')

    plt.grid(True)
    plt.xlabel('angle (deg)')
    plt.ylabel('(prob/deg)')
    plt.title('exit probability density, D={:0.0f}, R={:0.0f}'.format(
        param['D'], param['R']))
    if save_figs:
        plt.savefig('exit_prob_vs_angle.png', bbox_inches='tight')

plt.show()
コード例 #41
0
def purcell(target,
            r_toroid,
            surface_tension='pore.surface_tension',
            contact_angle='pore.contact_angle',
            diameter='throat.diameter'):
    r"""
    Computes the throat capillary entry pressure assuming the throat is a
    toroid.

    Parameters
    ----------
    target : OpenPNM Object
        The object for which these values are being calculated.  This
        controls the length of the calculated array, and also provides
        access to other necessary thermofluid properties.

    r_toroid : float or array_like
        The radius of the toroid surrounding the pore

    surface_tension : dict key (string)
        The dictionary key containing the surface tension values to be used.
        If a pore property is given, it is interpolated to a throat list.

    contact_angle : dict key (string)
        The dictionary key containing the contact angle values to be used.
        If a pore property is given, it is interpolated to a throat list.

    diameter : dict key (string)
        The dictionary key containing the throat diameter values to be used.

    Notes
    -----
    This approach accounts for the converging-diverging nature of many throat
    types.  Advancing the meniscus beyond the apex of the toroid requires an
    increase in capillary pressure beyond that for a cylindical tube of the
    same radius. The details of this equation are described by Mason and
    Morrow [1]_, and explored by Gostick [2]_ in the context of a pore network
    model.

    References
    ----------

    .. [1] G. Mason, N. R. Morrow, Effect of contact angle on capillary
           displacement curvatures in pore throats formed by spheres. J.
           Colloid Interface Sci. 168, 130 (1994).
    .. [2] J. Gostick, Random pore network modeling of fibrous PEMFC gas
           diffusion media using Voronoi and Delaunay tessellations. J.
           Electrochem. Soc. 160, F731 (2013).

    """
    network = target.project.network
    phase = target.project.find_phase(target)
    element, sigma, theta = _get_key_props(phase=phase,
                                           diameter=diameter,
                                           surface_tension=surface_tension,
                                           contact_angle=contact_angle)
    r = network[diameter] / 2
    R = r_toroid
    alpha = theta - 180 + \
        _sp.rad2deg(_sp.arcsin(_sp.sin(_sp.radians(theta))/(1+r/R)))
    value = (-2*sigma/r) * \
        (_sp.cos(_sp.radians(theta - alpha)) /
            (1 + R/r*(1 - _sp.cos(_sp.radians(alpha)))))
    if diameter.split('.')[0] == 'throat':
        value = value[phase.throats(target.name)]
    else:
        value = value[phase.pores(target.name)]
    return value
コード例 #42
0
def flowprandtlmeyer(**flow):
    """
    Prandtl-Meyer function for expansion waves.
    
    This function accepts a given set of specific heat ratios and
    an input of either Mach number, Mach angle or Prandtl-Meyer angle.
    Inputs can be a single scalar or an array_like data structure.

    Parameters
    ----------
    gamma : array_like, optional
        Specific heat ratio. Values must be greater than 1.
    M : array_like
        Mach number. Values must be greater than or equal to 1.
    nu : array_like
        Prandtl-Meyer angle [degrees]. Values must be
        0 <= M <= 90*(sqrt((g+1)/(g-1))-1).
    mu : array_like
        Mach angle [degrees]. Values must be 0 <= M <= 90.
    
    Returns
    -------
    out : (M, nu, mu)
        Tuple of Mach number, Prandtl-Meyer angle, Mach angle.
    
    Examples
    --------
    >>> flowprandtlmeyer(M=5)
    (5.0, 76.920215508538789, 11.536959032815489)
    """

    #parse the input
    gamma, flow, mtype, itype = _flowinput(flow)

    #calculate gamma-ratios for use in the equations
    l = sp.sqrt((gamma - 1) / (gamma + 1))

    #preshape mach array
    M = sp.empty(flow.shape, sp.float64)

    #use prandtl-meyer relation to solve for the mach number
    if mtype in ["mach", "m"]:
        if (flow < 1).any():
            raise Exception("Mach number inputs must be real numbers greater" \
                " than or equal to 1.")
        M = flow
    elif mtype in ["mu", "machangle"]:
        if (flow < 0).any() or (flow > 90).any():
            raise Exception("Mach angle inputs must be real numbers" \
                " 0 <= M <= 90.")
        M = 1 / sp.sin(sp.deg2rad(flow))
    elif mtype in ["nu", "pm", "pmangle"]:
        if (flow < 0).any() or (flow > 90 * ((1 / l) - 1)).any():
            raise Exception("Prandtl-Meyer angle inputs must be real" \
                " numbers 0 <= M <= 90*(sqrt((g+1)/(g-1))-1).")
        M[:] = 2  #initial guess for the solution
        for _ in xrange(_AETB_iternum):
            b = sp.sqrt(M**2 - 1)
            f = -sp.deg2rad(flow) + (1 / l) * sp.arctan(l * b) - sp.arctan(b)
            g = b * (1 - l**2) / (M * (1 + (l**2) * (b**2)))  #derivative
            M = M - (f / g)  #Newton-Raphson
    else:
        raise Exception("Keyword input must be an acceptable string to" \
            " select input parameter.")

    #normal shock relations
    b = sp.sqrt(M**2 - 1)
    V = (1 / l) * sp.arctan(l * b) - sp.arctan(b)
    U = sp.arcsin(1 / M)

    return from_ndarray(itype, M, sp.rad2deg(V), sp.rad2deg(U))
コード例 #43
0
ファイル: dbn2latex.py プロジェクト: undercoveridiot/gunfolds
def gprint(G, mtype="obs", bend=5, curve=5, R=1, layout=None, scale=5):
    """
    Prints out an automatically layout compressed dbn repesentation of
    the graph in TikZ/Latex format
    """
    output = StringIO.StringIO()
    BE = set()
    n = len(G)
    if not layout:
        g = dict2graph(ecj.cloneBfree(G))
        layout = g.layout_fruchterman_reingold(maxiter=50000, coolexp=1.1)
        # layout = g.layout_graphopt(niter=50000, node_charge=0.08)
        layout.center([0, 0])
        layout.scale(float(1 / scipy.absolute(layout.coords).max()))
        layout.scale(R)
        cc = scipy.round_(array(layout.coords), decimals=4)
    else:
        g = dict2graph(ecj.cloneBfree(G))
        cc = array(layout.coords)
    paintSCC(g, colors)
    for i in range(0, n):
        node = g.vs[i]['label']
        rc = g.vs[i]["color"]
        print >>output, "{ \\definecolor{mycolor}{RGB}{"\
            + str(rc[0]) + "," + str(rc[1]) + "," + str(rc[2]) + "}"
        mcolor = "fill = {rgb: red," + str(rc[0]) + "; green," + str(rc[1]) +\
            "; blue," + str(rc[2]) + "}"
        print >>output, "\\node[" + mtype + ", fill=mycolor] (" + node + ") at (" +\
            str(cc[i][0]) + "," + str(cc[i][1]) + ") {" + node + "};}"

    for i in range(0, n):
        v = g.vs[i]['label']
        ll = [v + '/' + u for u in G[v]]
        for l in ll:
            a, b = l.split('/')
            if G[a][b].intersection([(edge_type['bidirected'], 0)]):
                if not(BE.intersection([(a, b)]) or BE.intersection([(b, a)])):
                    print >>output, '  \\draw[pilip, on layer=back] (' +\
                        a + ') -- (' + b + ');'
            if G[a][b].intersection([(edge_type['directed'], 1)]):
                if a == b:
                    dff = cc[g.vs['label'].index(a)] - scipy.mean(cc, 0)
                    ang = scipy.arctan2(dff[1], dff[0])
                    ang_a = scipy.rad2deg(ang)
                    print >>output, "\\path[overlay,draw,pil] (" + a + ")" +\
                        " .. controls +(" + "%.5f" % (bend + ang_a) +\
                        ":" + fstr % (2 * curve) + "mm) and +(" +\
                        "%.5f" % (ang_a - bend) +\
                        ":" + "%.5f" % (2 * curve) + "mm) .. (" + b + ");"
                else:
                    dff = cc[g.vs['label'].index(b)] \
                        - cc[g.vs['label'].index(a)]
                    ang = scipy.arctan2(dff[1], dff[0])
                    ang_a = scipy.rad2deg(ang)
                    ang_b = ang_a + 180
                    print >>output, "\\path[overlay,draw,pil] (" + a + ")" +\
                        " .. controls +(" +\
                        "%.5f" % (bend + ang_a) +\
                        ":" + fstr % (curve) + "mm) and +(" +\
                        fstr % (ang_b - bend) +\
                        ":" + fstr % (curve) + "mm) .. (" + b + ");"
    return output
コード例 #44
0
ファイル: simpleTrack.py プロジェクト: xaviercallens/robokite
    def track(self):
        print "Press right mouse button to pause or play"
        print "Use left mouse button to select target"
        print "Target color must be different from background"
        print "Target must have width larger than height"
        print "Target can be upside down"

        #Parameters
        isUDPConnection = False  # Currently switched manually in the code
        display = True
        displayDebug = True
        useBasemap = False
        maxRelativeMotionPerFrame = 2  # How much the target can moved between two succesive frames
        pixelPerRadians = 320
        radius = pixelPerRadians
        referenceImage = '../ObjectTracking/kite_detail.jpg'
        scaleFactor = 0.5
        isVirtualCamera = True
        useHDF5 = False

        # Open reference image: this is used at initlalisation
        target_detail = Image(referenceImage)

        # Get RGB color palette of target (was found to work better than using hue)
        pal = target_detail.getPalette(bins=2, hue=False)

        # Open video to analyse or live stream
        #cam = JpegStreamCamera('http://192.168.1.29:8080/videofeed')#640 * 480
        if isVirtualCamera:
            #cam = VirtualCamera('../../zenith-wind-power-read-only/KiteControl-Qt/videos/kiteFlying.avi','video')
            #cam = VirtualCamera('/media/bat/DATA/Baptiste/Nautilab/kite_project/robokite/ObjectTracking/00095.MTS', 'video')
            #cam = VirtualCamera('output.avi', 'video')
            cam = VirtualCamera(
                '../Recording/Videos/Flying kite images (for kite steering unit development)-YTMgX1bvrTo.mp4',
                'video')
            virtualCameraFPS = 25
        else:
            cam = JpegStreamCamera(
                'http://192.168.43.1:8080/videofeed')  #640 * 480
            #cam = Camera()

        # Get a sample image to initialize the display at the same size
        img = cam.getImage().scale(scaleFactor)
        print img.width, img.height
        # Create a pygame display
        if display:
            if img.width > img.height:
                disp = Display(
                    (27 * 640 / 10, 25 * 400 / 10)
                )  #(int(2*img.width/scaleFactor), int(2*img.height/scaleFactor)))
            else:
                disp = Display((810, 1080))
        #js = JpegStreamer()

        # Initialize variables
        previous_angle = 0  # target has to be upright when starting. Target width has to be larger than target heigth.
        previous_coord_px = (
            0, 0)  # Initialized to top left corner, which always exists
        previous_dCoord = previous_coord_px
        previous_dAngle = previous_angle
        angles = []
        coords_px = []
        coord_px = [0, 0]
        angle = 0
        target_elevations = []
        target_bearings = []
        times = []
        wasTargetFoundInPreviousFrame = False
        i_frame = 0
        isPaused = False
        selectionInProgress = False
        th = [100, 100, 100]
        skycolor = Color.BLUE
        timeLastTarget = 0

        # Prepare recording
        recordFilename = datetime.datetime.utcnow().strftime(
            "%Y%m%d_%Hh%M_") + 'simpleTrack'
        if useHDF5:
            try:
                os.remove(recordFilename + '.hdf5')
            except:
                print('Creating file ' + recordFilename + '.hdf5')
            """ The following line is used to silence the following error (according to http://stackoverflow.com/questions/15117128/h5py-in-memory-file-and-multiprocessing-error)
    #000: ../../../src/H5F.c line 1526 in H5Fopen(): unable to open file
    major: File accessability
    minor: Unable to open file"""
            h5py._errors.silence_errors()
            recordFile = h5py.File(
                os.path.join(os.getcwd(), 'log', recordFilename + '.hdf5'),
                'a')
            hdfSize = 0
            dset = recordFile.create_dataset('kite', (2, 2),
                                             maxshape=(None, 7))
            imset = recordFile.create_dataset('image',
                                              (2, img.width, img.height, 3),
                                              maxshape=(None, img.width,
                                                        img.height, 3))
        else:
            try:
                os.remove(recordFilename + '.csv')
            except:
                print('Creating file ' + recordFilename + '.csv')
            recordFile = file(
                os.path.join(os.getcwd(), 'log', recordFilename + '.csv'), 'a')
            csv_writer = csv.writer(recordFile)
            csv_writer.writerow([
                'Time (s)', 'x (px)', 'y (px)', 'Orientation (rad)',
                'Elevation (rad)', 'Bearing (rad)', 'ROT (rad/s)'
            ])

        # Launch a thread to get UDP message with orientation of the camera
        mobile = mobileState.mobileState()
        if isUDPConnection:
            mobile.open()
        # Loop while not canceled by user
        t0 = time.time()
        previousTime = t0
        while not (display) or disp.isNotDone():
            t = time.time()
            deltaT = (t - previousTime)
            FPS = 1.0 / deltaT
            #print 'FPS =', FPS
            if isVirtualCamera:
                deltaT = 1.0 / virtualCameraFPS
            previousTime = t
            i_frame = i_frame + 1
            timestamp = datetime.datetime.utcnow()

            # Receive orientation of the camera
            if isUDPConnection:
                mobile.computeRPY([2, 0, 1], [-1, 1, 1])
            ctm = np.array([[sp.cos(mobile.roll), -sp.sin(mobile.roll)], \
                    [sp.sin(mobile.roll), sp.cos(mobile.roll)]]) # Coordinate transform matrix

            if useBasemap:
                # Warning this really slows down the computation
                m = Basemap(width=img.width,
                            height=img.height,
                            projection='aeqd',
                            lat_0=sp.rad2deg(mobile.pitch),
                            lon_0=sp.rad2deg(mobile.yaw),
                            rsphere=radius)

            # Get an image from camera
            if not isPaused:
                img = cam.getImage()
                img = img.resize(int(scaleFactor * img.width),
                                 int(scaleFactor * img.height))

            if display:
                # Pause image when right button is pressed
                dwn = disp.rightButtonDownPosition()
                if dwn is not None:
                    isPaused = not (isPaused)
                    dwn = None

            if display:
                # Create a layer to enable user to make a selection of the target
                selectionLayer = DrawingLayer((img.width, img.height))

            if img:
                if display:
                    # Create a new layer to host information retrieved from video
                    layer = DrawingLayer((img.width, img.height))
                    # Selection is a rectangle drawn while holding mouse left button down
                    if disp.leftButtonDown:
                        corner1 = (disp.mouseX, disp.mouseY)
                        selectionInProgress = True
                    if selectionInProgress:
                        corner2 = (disp.mouseX, disp.mouseY)
                        bb = disp.pointsToBoundingBox(
                            corner1,
                            corner2)  # Display the temporary selection
                        if disp.leftButtonUp:  # User has finished is selection
                            selectionInProgress = False
                            selection = img.crop(bb[0], bb[1], bb[2], bb[3])
                            if selection != None:
                                # The 3 main colors in the area selected are considered.
                                # Note that the selection should be included in the target and not contain background
                                try:
                                    selection.save('../ObjectTracking/' +
                                                   'kite_detail_tmp.jpg')
                                    img0 = Image(
                                        "kite_detail_tmp.jpg"
                                    )  # For unknown reason I have to reload the image...
                                    pal = img0.getPalette(bins=2, hue=False)
                                except:  # getPalette is sometimes bugging and raising LinalgError because matrix not positive definite
                                    pal = pal
                                wasTargetFoundInPreviousFrame = False
                                previous_coord_px = (bb[0] + bb[2] / 2,
                                                     bb[1] + bb[3] / 2)
                        if corner1 != corner2:
                            selectionLayer.rectangle((bb[0], bb[1]),
                                                     (bb[2], bb[3]),
                                                     width=5,
                                                     color=Color.YELLOW)

                # If the target was already found, we can save computation time by
                # reducing the Region Of Interest around predicted position
                if wasTargetFoundInPreviousFrame:
                    ROITopLeftCorner = (max(0, previous_coord_px[0]-maxRelativeMotionPerFrame/2*width), \
                              max(0, previous_coord_px[1] -height*maxRelativeMotionPerFrame/2))
                    ROI = img.crop(ROITopLeftCorner[0], ROITopLeftCorner[1],                          \
                                         maxRelativeMotionPerFrame*width, maxRelativeMotionPerFrame*height, \
                             centered = False)
                    if display:
                        # Draw the rectangle corresponding to the ROI on the complete image
                        layer.rectangle((previous_coord_px[0]-maxRelativeMotionPerFrame/2*width,  \
                                                 previous_coord_px[1]-maxRelativeMotionPerFrame/2*height), \
                                              (maxRelativeMotionPerFrame*width, maxRelativeMotionPerFrame*height), \
                               color = Color.GREEN, width = 2)
                else:
                    # Search on the whole image if no clue of where is the target
                    ROITopLeftCorner = (0, 0)
                    ROI = img
                    '''#Option 1
        target_part0 = ROI.hueDistance(color=(142,50,65)).invert().threshold(150)
        target_part1 = ROI.hueDistance(color=(93,16,28)).invert().threshold(150)
        target_part2 = ROI.hueDistance(color=(223,135,170)).invert().threshold(150)
        target_raw_img = target_part0+target_part1+target_part2
        target_img = target_raw_img.erode(5).dilate(5)

        #Option 2
        target_img = ROI.hueDistance(imgModel.getPixel(10,10)).binarize().invert().erode(2).dilate(2)'''

                    # Find sky color
                sky = (img - img.binarize()).findBlobs(minsize=10000)
                if sky:
                    skycolor = sky[0].meanColor()
                # Option 3
                target_img = ROI - ROI  # Black image

                # Loop through palette of target colors
                if display and displayDebug:
                    decomposition = []
                i_col = 0
                for col in pal:
                    c = tuple([int(col[i]) for i in range(0, 3)])
                    # Search the target based on color
                    ROI.save('../ObjectTracking/' + 'ROI_tmp.jpg')
                    img1 = Image('../ObjectTracking/' + 'ROI_tmp.jpg')
                    filter_img = img1.colorDistance(color=c)
                    h = filter_img.histogram(numbins=256)
                    cs = np.cumsum(h)
                    thmax = np.argmin(
                        abs(cs - 0.02 * img.width * img.height)
                    )  # find the threshold to have 10% of the pixel in the expected color
                    thmin = np.argmin(
                        abs(cs - 0.005 * img.width * img.height)
                    )  # find the threshold to have 10% of the pixel in the expected color
                    if thmin == thmax:
                        newth = thmin
                    else:
                        newth = np.argmin(h[thmin:thmax]) + thmin
                    alpha = 0.5
                    th[i_col] = alpha * th[i_col] + (1 - alpha) * newth
                    filter_img = filter_img.threshold(
                        max(40, min(200, th[i_col]))).invert()
                    target_img = target_img + filter_img
                    #print th
                    i_col = i_col + 1
                    if display and displayDebug:
                        [R, G, B] = filter_img.splitChannels()
                        white = (R - R).invert()
                        r = R * 1.0 / 255 * c[0]
                        g = G * 1.0 / 255 * c[1]
                        b = B * 1.0 / 255 * c[2]
                        tmp = white.mergeChannels(r, g, b)
                        decomposition.append(tmp)

                # Get a black background with with white target foreground
                target_img = target_img.threshold(150)

                target_img = target_img - ROI.colorDistance(
                    color=skycolor).threshold(80).invert()

                if display and displayDebug:
                    small_ini = target_img.resize(
                        int(img.width / (len(pal) + 1)),
                        int(img.height / (len(pal) + 1)))
                    for tmp in decomposition:
                        small_ini = small_ini.sideBySide(tmp.resize(
                            int(img.width / (len(pal) + 1)),
                            int(img.height / (len(pal) + 1))),
                                                         side='bottom')
                    small_ini = small_ini.adaptiveScale(
                        (int(img.width), int(img.height)))
                    toDisplay = img.sideBySide(small_ini)
                else:
                    toDisplay = img
                    #target_img = ROI.hueDistance(color = Color.RED).threshold(10).invert()

                # Search for binary large objects representing potential target
                target = target_img.findBlobs(minsize=500)

                if target:  # If a target was found

                    if wasTargetFoundInPreviousFrame:
                        predictedTargetPosition = (
                            width * maxRelativeMotionPerFrame / 2,
                            height * maxRelativeMotionPerFrame / 2
                        )  # Target will most likely be close to the center of the ROI
                    else:
                        predictedTargetPosition = previous_coord_px
                        # If there are several targets in the image, take the one which is the closest of the predicted position
                    target = target.sortDistance(predictedTargetPosition)

                    # Get target coordinates according to minimal bounding rectangle or centroid.
                    coordMinRect = ROITopLeftCorner + np.array(
                        (target[0].minRectX(), target[0].minRectY()))
                    coord_px = ROITopLeftCorner + np.array(
                        target[0].centroid())

                    # Rotate the coordinates of roll angle around the middle of the screen
                    rot_coord_px = np.dot(
                        ctm, coord_px -
                        np.array([img.width / 2, img.height / 2])) + np.array(
                            [img.width / 2, img.height / 2])
                    if useBasemap:
                        coord = sp.deg2rad(
                            m(rot_coord_px[0],
                              img.height - rot_coord_px[1],
                              inverse=True))
                    else:
                        coord = localProjection(
                            rot_coord_px[0] - img.width / 2,
                            img.height / 2 - rot_coord_px[1],
                            radius,
                            mobile.yaw,
                            mobile.pitch,
                            inverse=True)
                    target_bearing, target_elevation = coord

                    # Get minimum bounding rectangle for display purpose
                    minR = ROITopLeftCorner + np.array(target[0].minRect())

                    contours = target[0].contour()

                    contours = [
                        ROITopLeftCorner + np.array(contour)
                        for contour in contours
                    ]

                    # Get target features
                    angle = sp.deg2rad(target[0].angle()) + mobile.roll
                    angle = sp.deg2rad(
                        unwrap180(sp.rad2deg(angle),
                                  sp.rad2deg(previous_angle)))
                    width = target[0].width()
                    height = target[0].height()

                    # Check if the kite is upside down
                    # First rotate the kite
                    ctm2 = np.array([[sp.cos(-angle+mobile.roll), -sp.sin(-angle+mobile.roll)], \
                        [sp.sin(-angle+mobile.roll), sp.cos(-angle+mobile.roll)]]) # Coordinate transform matrix
                    rotated_contours = [
                        np.dot(ctm2, contour - coordMinRect)
                        for contour in contours
                    ]
                    y = [-tmp[1] for tmp in rotated_contours]
                    itop = np.argmax(y)  # Then looks at the points at the top
                    ibottom = np.argmin(y)  # and the point at the bottom
                    # The point the most excentered is at the bottom
                    if abs(rotated_contours[itop][0]) > abs(
                            rotated_contours[ibottom][0]):
                        isInverted = True
                    else:
                        isInverted = False

                    if isInverted:
                        angle = angle + sp.pi

                        # Filter the data
                    alpha = 1 - sp.exp(-deltaT / self.filterTimeConstant)
                    if not (isPaused):
                        dCoord = np.array(previous_dCoord) * (
                            1 - alpha) + alpha * (
                                np.array(coord_px) - previous_coord_px
                            )  # related to the speed only if cam is fixed
                        dAngle = np.array(previous_dAngle) * (
                            1 - alpha) + alpha * (np.array(angle) -
                                                  previous_angle)
                    else:
                        dCoord = np.array([0, 0])
                        dAngle = np.array([0])


#print coord_px, angle, width, height, dCoord

# Record important data
                    times.append(timestamp)
                    coords_px.append(coord_px)
                    angles.append(angle)
                    target_elevations.append(target_elevation)
                    target_bearings.append(target_bearing)

                    # Export data to controller
                    self.elevation = target_elevation
                    self.bearing = target_bearing
                    self.orientation = angle
                    dt = time.time() - timeLastTarget
                    self.ROT = dAngle / dt
                    self.lastUpdateTime = t

                    # Save for initialisation of next step
                    previous_dCoord = dCoord
                    previous_angle = angle
                    previous_coord_px = (int(coord_px[0]), int(coord_px[1]))
                    wasTargetFoundInPreviousFrame = True
                    timeLastTarget = time.time()

                else:
                    wasTargetFoundInPreviousFrame = False

                if useHDF5:
                    hdfSize = hdfSize + 1
                    dset.resize((hdfSize, 7))
                    imset.resize((hdfSize, img.width, img.height, 3))
                    dset[hdfSize - 1, :] = [
                        time.time(), coord_px[0], coord_px[1], angle,
                        self.elevation, self.bearing, self.ROT
                    ]
                    imset[hdfSize - 1, :, :, :] = img.getNumpy()
                    recordFile.flush()
                else:
                    csv_writer.writerow([
                        time.time(), coord_px[0], coord_px[1], angle,
                        self.elevation, self.bearing, self.ROT
                    ])

                if display:
                    if target:
                        # Add target features to layer
                        # Minimal rectange and its center in RED
                        layer.polygon(minR[(0, 1, 3, 2), :],
                                      color=Color.RED,
                                      width=5)
                        layer.circle(
                            (int(coordMinRect[0]), int(coordMinRect[1])),
                            10,
                            filled=True,
                            color=Color.RED)

                        # Target contour and centroid in BLUE
                        layer.circle((int(coord_px[0]), int(coord_px[1])),
                                     10,
                                     filled=True,
                                     color=Color.BLUE)
                        layer.polygon(contours, color=Color.BLUE, width=5)

                        # Speed vector in BLACK
                        layer.line((int(coord_px[0]), int(coord_px[1])),
                                   (int(coord_px[0] + 20 * dCoord[0]),
                                    int(coord_px[1] + 20 * dCoord[1])),
                                   width=3)

                        # Line giving angle
                        layer.line((int(coord_px[0] + 200 * sp.cos(angle)),
                                    int(coord_px[1] + 200 * sp.sin(angle))),
                                   (int(coord_px[0] - 200 * sp.cos(angle)),
                                    int(coord_px[1] - 200 * sp.sin(angle))),
                                   color=Color.RED)

                    # Line giving rate of turn
                    #layer.line((int(coord_px[0]+200*sp.cos(angle+dAngle*10)), int(coord_px[1]+200*sp.sin(angle+dAngle*10))), (int(coord_px[0]-200*sp.cos(angle + dAngle*10)), int(coord_px[1]-200*sp.sin(angle+dAngle*10))))

                # Add the layer to the raw image
                    toDisplay.addDrawingLayer(layer)
                    toDisplay.addDrawingLayer(selectionLayer)

                    # Add time metadata
                    toDisplay.drawText(str(i_frame) + " " + str(timestamp),
                                       x=0,
                                       y=0,
                                       fontsize=20)

                    # Add Line giving horizon
                    #layer.line((0, int(img.height/2 + mobile.pitch*pixelPerRadians)),(img.width, int(img.height/2 + mobile.pitch*pixelPerRadians)), width = 3, color = Color.RED)

                    # Plot parallels
                    for lat in range(-90, 90, 15):
                        r = range(0, 361, 10)
                        if useBasemap:
                            # \todo improve for high roll
                            l = m(r, [lat] * len(r))
                            pix = [np.array(l[0]), img.height - np.array(l[1])]
                        else:
                            l = localProjection(sp.deg2rad(r), \
                                    sp.deg2rad([lat]*len(r)), \
                                    radius, \
                                    lon_0 = mobile.yaw, \
                                    lat_0 = mobile.pitch, \
                                    inverse = False)
                            l = np.dot(ctm, l)
                            pix = [
                                np.array(l[0]) + img.width / 2,
                                img.height / 2 - np.array(l[1])
                            ]

                        for i in range(len(r) - 1):
                            if isPixelInImage(
                                (pix[0][i], pix[1][i]), img) or isPixelInImage(
                                    (pix[0][i + 1], pix[1][i + 1]), img):
                                layer.line((pix[0][i], pix[1][i]),
                                           (pix[0][i + 1], pix[1][i + 1]),
                                           color=Color.WHITE,
                                           width=2)

                # Plot meridians
                    for lon in range(0, 360, 15):
                        r = range(-90, 91, 10)
                        if useBasemap:
                            # \todo improve for high roll
                            l = m([lon] * len(r), r)
                            pix = [np.array(l[0]), img.height - np.array(l[1])]
                        else:
                            l= localProjection(sp.deg2rad([lon]*len(r)), \
                                    sp.deg2rad(r), \
                                    radius, \
                                    lon_0 = mobile.yaw, \
                                    lat_0 = mobile.pitch, \
                                    inverse = False)
                            l = np.dot(ctm, l)
                            pix = [
                                np.array(l[0]) + img.width / 2,
                                img.height / 2 - np.array(l[1])
                            ]

                        for i in range(len(r) - 1):
                            if isPixelInImage(
                                (pix[0][i], pix[1][i]), img) or isPixelInImage(
                                    (pix[0][i + 1], pix[1][i + 1]), img):
                                layer.line((pix[0][i], pix[1][i]),
                                           (pix[0][i + 1], pix[1][i + 1]),
                                           color=Color.WHITE,
                                           width=2)

                # Text giving bearing
                # \todo improve for high roll
                    for bearing_deg in range(0, 360, 30):
                        l = localProjection(sp.deg2rad(bearing_deg),
                                            sp.deg2rad(0),
                                            radius,
                                            lon_0=mobile.yaw,
                                            lat_0=mobile.pitch,
                                            inverse=False)
                        l = np.dot(ctm, l)
                        layer.text(
                            str(bearing_deg),
                            (img.width / 2 + int(l[0]), img.height - 20),
                            color=Color.RED)

                # Text giving elevation
                # \todo improve for high roll
                    for elevation_deg in range(-60, 91, 30):
                        l = localProjection(0,
                                            sp.deg2rad(elevation_deg),
                                            radius,
                                            lon_0=mobile.yaw,
                                            lat_0=mobile.pitch,
                                            inverse=False)
                        l = np.dot(ctm, l)
                        layer.text(str(elevation_deg),
                                   (img.width / 2, img.height / 2 - int(l[1])),
                                   color=Color.RED)

                    #toDisplay.save(js)
                    toDisplay.save(disp)
            if display:
                toDisplay.removeDrawingLayer(1)
                toDisplay.removeDrawingLayer(0)
        recordFile.close()
コード例 #45
0
  kite_base = Image('http://www.winds-up.com/images/annonces/7915_1.jpg').resize(50, 50).invert()
  disp = Display()

  i_loop = 0
  #pid = PID.PID(1, 1, 0.1)
  offset = sp.pi/3*0
  kite_model = kiteModel()
  dX = 0*kite_model.X
  while disp.isNotDone():
    setpoint = sp.pi/1.7*sp.sin(2*sp.pi/7*time.time())+offset
    i_loop = i_loop +1
    order = 0+0*sp.randn(1)/5+2.0*disp.mouseX/background.width-1 
    #error = X[0] -setpoint
    #order = sp.randn(1)/100 +  pid.computeCorrection(error, dX[0]/dt-0)
    #pid.incrementTime(error, dt)
    dt = 0.1
    kite_model.update(order, dt)
    print kite_model.X
    kite = kite_base.rotate(sp.rad2deg(kite_model.X[0]), fixed=False).invert()
    #kite.save(disp)d
    #background.blit(kite, (799,0)).save(disp)

    toDisplay = background.blit(kite.invert(), (max(-kite.width +1, min(background.width-1, int(kite_model.X[1]+background.width/2-kite.width/2))), max(-kite.height+1, min(background.height-1, int(background.height-kite_model.X[2]-200)))), mask = kite.binarize())

    toDisplay.drawText(str(i_loop*dt), 0, 0, color = Color.RED, fontsize=60)
    toDisplay.save(disp)
    time.sleep(dt)
  


コード例 #46
0
    #pid = PID.PID(1, 1, 0.1)
    offset = sp.pi / 3 * 0
    kite_model = kiteModel()
    dX = 0 * kite_model.X
    while disp.isNotDone():
        setpoint = sp.pi / 1.7 * sp.sin(2 * sp.pi / 7 * time.time()) + offset
        i_loop = i_loop + 1
        order = 0 + 0 * sp.randn(
            1) / 5 + 2.0 * disp.mouseX / background.width - 1
        #error = X[0] -setpoint
        #order = sp.randn(1)/100 +  pid.computeCorrection(error, dX[0]/dt-0)
        #pid.incrementTime(error, dt)
        dt = 0.1
        kite_model.update(order, dt)
        print kite_model.X
        kite = kite_base.rotate(sp.rad2deg(kite_model.X[0]),
                                fixed=False).invert()
        #kite.save(disp)d
        #background.blit(kite, (799,0)).save(disp)

        toDisplay = background.blit(
            kite.invert(),
            (max(
                -kite.width + 1,
                min(
                    background.width - 1,
                    int(kite_model.X[1] + background.width / 2 -
                        kite.width / 2))),
             max(
                 -kite.height + 1,
                 min(background.height - 1,