コード例 #1
0
ファイル: fit_test.py プロジェクト: erwindl0/scisoft-core
def myfunc(pa, pb, x, *arg):
    '''pa -- parameter a
    pb -- parameter b
    x -- list of coordinate datasets
    arg -- tuple of additional arguments
    '''
    return pa*dnp.exp(-pb*x[0])
コード例 #2
0
ファイル: fit_test.py プロジェクト: Chengys18/scisoft-core
def myfunc(pa, pb, x, *arg):
    '''pa -- parameter a
    pb -- parameter b
    x -- list of coordinate datasets
    arg -- tuple of additional arguments
    '''
    return pa * dnp.exp(-pb * x[0])
コード例 #3
0
def myGaussianWithOffsetFunc(mu, sigma, a, o, x, *arg):
	'''mu	-- centre parameter
	   sigma -- sigma parameter
	   a	 -- peak parameter
	   x -- list of coordinate datasets
	arg -- tuple of additional arguments
	'''
	return o+a*dnp.exp( -(x[0]-mu)*(x[0]-mu)/(2*sigma*sigma) );
コード例 #4
0
def myGaussian2DFunc(height, center_x, center_y, sigma_x, sigma_y, xy, *arg):
	'''
		height	  --peak parameters
		centre_x,y	-- centre parameters
		sigma_x, y   -- sigma parameter
		x -- list of coordinate datasets
		arg -- tuple of additional arguments
	'''
	x=xy[0]; y=xy[1];
	sigma_x = float(sigma_x)
	sigma_y = float(sigma_y)
	return height*dnp.exp( -(((center_x-x)/sigma_x)**2 + ((center_y-y)/sigma_y)**2)/2 );
コード例 #5
0
import math

from Diamond.Analysis.FunctionalDevices import GaussianDevice

import scisoftpy as dnp

gaussianFun = lambda x: 20.+100*dnp.exp(-(10-x)**2/20.)

#Simple Gaussian fitting by calculating the moments of the distribution
#Only useful when the data are suitable
def simpleFitGaussian(data, x=None, plotPanel=None):
	if x is None:
		x=dnp.arange(data.size)

	mu=sum(x*data)/sum(data)
	sigma = math.sqrt(abs(dnp.sum((x-mu)**2*data)/dnp.sum(data)))
	peak=data.max();
	area=sum(data);
    
	if plotPanel is not None:
		print("To plot the fitted data")
		y1=myGaussianFunc(mu, sigma, peak, [x]);
		dnp.plot.line(x, [data, y1] ) # plot line of evaluated function

	return [mu, sigma, peak, area]

#To fit a Gaussian 1d data set
def fineGaussianFitting(data, x=None, plotPanel=None):
	nfactor = data.max(); #The squash factor on the Y axis
	a, b=1, 0;
コード例 #6
0
def gaussian2D(height, center_x, center_y, sigma_x, sigma_y):
	"""Returns a gaussian function with the given parameters"""
	sigma_x = float(sigma_x)
	sigma_y = float(sigma_y)
	return lambda x,y: height*dnp.exp( -(((center_x-x)/sigma_x*math)**2 + ((center_y-y)/sigma_y)**2)/2 )