コード例 #1
0
    def __init__(self,
                 address,
                 pickle_dirname=".",
                 pickle_basename="hist",
                 roi=None,
                 hist_min=None,
                 hist_max=None,
                 n_slots=None,
                 **kwds):
        """

    @param address         Address string XXX Que?!
    @param pickle_dirname     Directory portion of output pickle file
                           XXX mean, mu?
    @param pickle_basename    Filename prefix of output pickle file
                           image XXX mean, mu?
    @param calib_dir       Directory with calibration information
    @param dark_path       Path to input dark image
    @param dark_stddev     Path to input dark standard deviation
    """
        super(pixel_histograms, self).__init__(address=address, **kwds)
        self.pickle_dirname = cspad_tbx.getOptString(pickle_dirname)
        self.pickle_basename = cspad_tbx.getOptString(pickle_basename)
        self.hist_min = cspad_tbx.getOptFloat(hist_min)
        self.hist_max = cspad_tbx.getOptFloat(hist_max)
        self.n_slots = cspad_tbx.getOptInteger(n_slots)
        self.histograms = {}
        self.dimensions = None
        self.roi = cspad_tbx.getOptROI(roi)
        self.values = flex.long()

        self.sigma_scaling = False
        if self.hist_min is None: self.hist_min = -50
        if self.hist_max is None: self.hist_max = 150
        if self.n_slots is None: self.n_slots = 200
コード例 #2
0
  def __init__(self,
               address,
               pickle_dirname=".",
               pickle_basename="hist",
               roi=None,
               hist_min=None,
               hist_max=None,
               n_slots=None,
               **kwds):
    """

    @param address         Address string XXX Que?!
    @param pickle_dirname     Directory portion of output pickle file
                           XXX mean, mu?
    @param pickle_basename    Filename prefix of output pickle file
                           image XXX mean, mu?
    @param calib_dir       Directory with calibration information
    @param dark_path       Path to input dark image
    @param dark_stddev     Path to input dark standard deviation
    """
    super(pixel_histograms, self).__init__(
      address=address,
      **kwds
    )
    self.pickle_dirname = cspad_tbx.getOptString(pickle_dirname)
    self.pickle_basename = cspad_tbx.getOptString(pickle_basename)
    self.hist_min = cspad_tbx.getOptFloat(hist_min)
    self.hist_max = cspad_tbx.getOptFloat(hist_max)
    self.n_slots = cspad_tbx.getOptInteger(n_slots)
    self.histograms = {}
    self.dimensions = None
    self.roi = cspad_tbx.getOptROI(roi)
    self.values = flex.long()

    self.sigma_scaling = False
    if self.hist_min is None: self.hist_min = -50
    if self.hist_max is None: self.hist_max = 150
    if self.n_slots is None: self.n_slots = 200
コード例 #3
0
ファイル: factory.py プロジェクト: biochem-fan/dials
  def run(self, flags, sweep=None, observations=None, **kwargs):
    obs_x, obs_y = observations.centroids().px_position_xy().parts()

    import numpy as np
    H, xedges, yedges = np.histogram2d(
      obs_x.as_numpy_array(), obs_y.as_numpy_array(),bins=self.nbins)

    from scitbx.array_family import flex
    H_flex = flex.double(H.flatten().astype(np.float64))
    n_slots = min(int(flex.max(H_flex)), 30)
    hist = flex.histogram(H_flex, n_slots=n_slots)

    slots = hist.slots()
    cumulative_hist = flex.long(len(slots))
    for i in range(len(slots)):
      cumulative_hist[i] = slots[i]
      if i > 0:
        cumulative_hist[i] += cumulative_hist[i-1]

    cumulative_hist = cumulative_hist.as_double()/flex.max(
      cumulative_hist.as_double())

    cutoff = None
    gradients = flex.double()
    for i in range(len(slots)-1):
      x1 = cumulative_hist[i]
      x2 = cumulative_hist[i+1]
      g = (x2 - x1)/hist.slot_width()
      gradients.append(g)
      if (cutoff is None and  i > 0 and
          g < self.gradient_cutoff and gradients[i-1] < self.gradient_cutoff):
        cutoff = hist.slot_centers()[i-1]-0.5*hist.slot_width()

    H_flex = flex.double(np.ascontiguousarray(H))
    isel = (H_flex > cutoff).iselection()
    sel = np.column_stack(np.where(H > cutoff))
    for (ix, iy) in sel:
      flags.set_selected(
        ((obs_x > xedges[ix]) & (obs_x < xedges[ix+1]) &
         (obs_y > yedges[iy]) & (obs_y < yedges[iy+1])), False)

    if 0:
      from matplotlib import pyplot
      fig, ax1 = pyplot.subplots()
      extent = [yedges[0], yedges[-1], xedges[0], xedges[-1]]
      plot1 = ax1.imshow(H, extent=extent, interpolation="nearest")
      pyplot.xlim((0, pyplot.xlim()[1]))
      pyplot.ylim((0, pyplot.ylim()[1]))
      pyplot.gca().invert_yaxis()
      cbar1 = pyplot.colorbar(plot1)
      pyplot.axes().set_aspect('equal')
      pyplot.show()

      fig, ax1 = pyplot.subplots()
      ax2 = ax1.twinx()
      ax1.scatter(hist.slot_centers()-0.5*hist.slot_width(), cumulative_hist)
      ax1.set_ylim(0, 1)
      ax2.plot(hist.slot_centers()[:-1]-0.5*hist.slot_width(), gradients)
      ymin, ymax = pyplot.ylim()
      pyplot.vlines(cutoff, ymin, ymax, color='r')
      pyplot.show()

      H2 = H.copy()
      if cutoff is not None:
        H2[np.where(H2 >= cutoff)] = 0
      fig, ax1 = pyplot.subplots()
      plot1 = ax1.pcolormesh(xedges, yedges, H2)
      pyplot.xlim((0, pyplot.xlim()[1]))
      pyplot.ylim((0, pyplot.ylim()[1]))
      pyplot.gca().invert_yaxis()
      cbar1 = pyplot.colorbar(plot1)
      pyplot.axes().set_aspect('equal')
      pyplot.show()

    return flags
コード例 #4
0
    def run(self, flags, sweep=None, observations=None, **kwargs):
        obs_x, obs_y = observations.centroids().px_position_xy().parts()

        import numpy as np
        H, xedges, yedges = np.histogram2d(obs_x.as_numpy_array(),
                                           obs_y.as_numpy_array(),
                                           bins=self.nbins)

        from scitbx.array_family import flex
        H_flex = flex.double(H.flatten().astype(np.float64))
        n_slots = min(int(flex.max(H_flex)), 30)
        hist = flex.histogram(H_flex, n_slots=n_slots)

        slots = hist.slots()
        cumulative_hist = flex.long(len(slots))
        for i in range(len(slots)):
            cumulative_hist[i] = slots[i]
            if i > 0:
                cumulative_hist[i] += cumulative_hist[i - 1]

        cumulative_hist = cumulative_hist.as_double() / flex.max(
            cumulative_hist.as_double())

        cutoff = None
        gradients = flex.double()
        for i in range(len(slots) - 1):
            x1 = cumulative_hist[i]
            x2 = cumulative_hist[i + 1]
            g = (x2 - x1) / hist.slot_width()
            gradients.append(g)
            if (cutoff is None and i > 0 and g < self.gradient_cutoff
                    and gradients[i - 1] < self.gradient_cutoff):
                cutoff = hist.slot_centers()[i - 1] - 0.5 * hist.slot_width()

        H_flex = flex.double(np.ascontiguousarray(H))
        isel = (H_flex > cutoff).iselection()
        sel = np.column_stack(np.where(H > cutoff))
        for (ix, iy) in sel:
            flags.set_selected(
                ((obs_x > xedges[ix]) & (obs_x < xedges[ix + 1]) &
                 (obs_y > yedges[iy]) & (obs_y < yedges[iy + 1])), False)

        if 0:
            from matplotlib import pyplot
            fig, ax1 = pyplot.subplots()
            extent = [yedges[0], yedges[-1], xedges[0], xedges[-1]]
            plot1 = ax1.imshow(H, extent=extent, interpolation="nearest")
            pyplot.xlim((0, pyplot.xlim()[1]))
            pyplot.ylim((0, pyplot.ylim()[1]))
            pyplot.gca().invert_yaxis()
            cbar1 = pyplot.colorbar(plot1)
            pyplot.axes().set_aspect('equal')
            pyplot.show()

            fig, ax1 = pyplot.subplots()
            ax2 = ax1.twinx()
            ax1.scatter(hist.slot_centers() - 0.5 * hist.slot_width(),
                        cumulative_hist)
            ax1.set_ylim(0, 1)
            ax2.plot(hist.slot_centers()[:-1] - 0.5 * hist.slot_width(),
                     gradients)
            ymin, ymax = pyplot.ylim()
            pyplot.vlines(cutoff, ymin, ymax, color='r')
            pyplot.show()

            H2 = H.copy()
            if cutoff is not None:
                H2[np.where(H2 >= cutoff)] = 0
            fig, ax1 = pyplot.subplots()
            plot1 = ax1.pcolormesh(xedges, yedges, H2)
            pyplot.xlim((0, pyplot.xlim()[1]))
            pyplot.ylim((0, pyplot.ylim()[1]))
            pyplot.gca().invert_yaxis()
            cbar1 = pyplot.colorbar(plot1)
            pyplot.axes().set_aspect('equal')
            pyplot.show()

        return flags