コード例 #1
0
def line_plot():
    """Make a line plot of T along the vertical direction."""
    if T.ufl_element().degree() != 1:
        T2 = interpolate(T, FunctionSpace(mesh, 'Lagrange', 1))
    else:
        T2 = T
    T_box = scitools.BoxField.dolfin_function2BoxField(
            T2, mesh, divisions, uniform_mesh=True)
    #T_box = scitools.BoxField.update_from_dolfin_array(
    #        T.vector().array(), T_box)
    coor, Tval, fixed, snapped = \
            T_box.gridline(start_pt, direction=d-1)

    # Use just one ev.plot command, not hold('on') and two ev.plot
    # etc for smooth movie on the screen
    if kappa_0 == kappa_1:  # analytical solution?
        ev.plot(coor, Tval, 'r-',
                coor, T_exact(coor), 'b-',
                axis=[-D, 0, T_R-T_A, T_R+T_A],
                xlabel='depth', ylabel='temperature',
                legend=['numerical', 'exact, const kappa=%g' % kappa_0],
                legend_loc='upper left',
                title='t=%.4f' % t)
    else:
        ev.plot(coor, Tval, 'r-',
                axis=[-D, 0, T_R-T_A, T_R+T_A],
                xlabel='depth', ylabel='temperature',
                title='t=%.4f' % t)

    ev.savefig('tmp_%04d.png' % counter)
    time.sleep(0.1)
コード例 #2
0
ファイル: sin_daD.py プロジェクト: vincentqb/dolfin
def line_plot():
    """Make a line plot of T along the vertical direction."""
    if T.ufl_element().degree() != 1:
        T2 = interpolate(T, FunctionSpace(mesh, 'Lagrange', 1))
    else:
        T2 = T
    T_box = scitools.BoxField.dolfin_function2BoxField(
            T2, mesh, divisions, uniform_mesh=True)
    #T_box = scitools.BoxField.update_from_dolfin_array(
    #        T.vector().array(), T_box)
    coor, Tval, fixed, snapped = \
            T_box.gridline(start_pt, direction=d-1)

    # Use just one ev.plot command, not hold('on') and two ev.plot
    # etc for smooth movie on the screen
    if kappa_0 == kappa_1:  # analytical solution?
        ev.plot(coor, Tval, 'r-',
                coor, T_exact(coor), 'b-',
                axis=[-D, 0, T_R-T_A, T_R+T_A],
                xlabel='depth', ylabel='temperature',
                legend=['numerical', 'exact, const kappa=%g' % kappa_0],
                legend_loc='upper left',
                title='t=%.4f' % t)
    else:
        ev.plot(coor, Tval, 'r-',
                axis=[-D, 0, T_R-T_A, T_R+T_A],
                xlabel='depth', ylabel='temperature',
                title='t=%.4f' % t)

    ev.savefig('tmp_%04d.png' % counter)
    time.sleep(0.1)
コード例 #3
0
x = y = np.linspace(-10., 10., 11)
x2v, y2v = plt.ndgrid(x, y)  # Define a coarser grid for the vector field
h2v = h0 / (1 + (x2v**2 + y2v**2) / (R**2))  # Compute height for new grid
dhdx, dhdy = np.gradient(h2v)  # Compute the gradient vector (dh/dx,dh/dy)

# Draw contours and gradient field of h
plt.figure(9)
plt.quiver(x2v, y2v, dhdx, dhdy, 0, 'r')
plt.hold('on')
plt.contour(xv, yv, hv)
plt.axis('equal')
# end draw contours and gradient field of h

x = y = np.linspace(-5, 5, 11)
xv, yv = plt.ndgrid(x, y)
u = xv**2 + 2 * yv - .5 * xv * yv
v = -3 * yv

# Draw 2D-field
plt.figure(10)
plt.quiver(xv, yv, u, v, 200, 'b')
plt.axis('equal')
# end draw 2D-field

plt.figure(9)
plt.savefig('images/quiver_scitools_advanced.pdf')
plt.savefig('images/quiver_scitools_advanced.png')

plt.figure(10)
plt.savefig('images/quiver_scitools_simple.pdf')
plt.savefig('images/quiver_scitools_simple.png')
コード例 #4
0
# 10 black ('k') contour lines
plt.figure(6)
plt.contour(xv, yv, hv, 10, 'k')

# Specify the contour levels explicitly as a list
plt.figure(7)
levels = [500., 1000., 1500., 2000.]
plt.contour(xv, yv, hv, levels=levels)

# Add labels with the contour level for each contour line
plt.figure(8)
plt.contour(xv, yv, hv, clabels='on')
#end contourplots

plt.figure(1)
plt.savefig('images/simple_plot_scitools.png')
plt.savefig('images/simple_plot_scitools.pdf')

plt.figure(2)
plt.savefig('images/simple_plot_colours_scitools.png')
plt.savefig('images/simple_plot_colours_scitools.pdf')

plt.figure(3)
plt.savefig('images/default_contour_scitools.pdf')
plt.savefig('images/default_contour_scitools.png')

plt.figure(4)
plt.savefig('images/default_contour3_scitools.png')
plt.savefig('images/default_contour3_scitools.pdf')

plt.figure(5)
コード例 #5
0
# Draw contours and gradient field of h
plt.figure(9)
plt.quiver(x2v, y2v, dhdx, dhdy, 0, 'r')
plt.hold('on')
plt.contour(xv, yv, hv)
plt.axis('equal')
# end draw contours and gradient field of h

x = y = np.linspace(-5, 5, 11)
xv, yv = plt.ndgrid(x, y)
u = xv**2 + 2*yv - .5*xv*yv
v = -3*yv

# Draw 2D-field
plt.figure(10)
plt.quiver(xv, yv, u, v, 200, 'b')
plt.axis('equal')
# end draw 2D-field





plt.figure(9)
plt.savefig('images/quiver_scitools_advanced.pdf')
plt.savefig('images/quiver_scitools_advanced.png')

plt.figure(10)
plt.savefig('images/quiver_scitools_simple.pdf')
plt.savefig('images/quiver_scitools_simple.png')
コード例 #6
0
# 10 black ('k') contour lines
plt.figure(6)
plt.contour(xv, yv, hv, 10, 'k')

# Specify the contour levels explicitly as a list
plt.figure(7)
levels = [500., 1000., 1500., 2000.]
plt.contour(xv, yv, hv, levels=levels)

# Add labels with the contour level for each contour line
plt.figure(8)
plt.contour(xv, yv, hv, clabels='on')
#end contourplots

plt.figure(1)
plt.savefig('images/simple_plot_scitools.png')
plt.savefig('images/simple_plot_scitools.pdf')

plt.figure(2)
plt.savefig('images/simple_plot_colours_scitools.png')
plt.savefig('images/simple_plot_colours_scitools.pdf')

plt.figure(3)
plt.savefig('images/default_contour_scitools.pdf')
plt.savefig('images/default_contour_scitools.png')

plt.figure(4)
plt.savefig('images/default_contour3_scitools.png')
plt.savefig('images/default_contour3_scitools.pdf')

plt.figure(5)