コード例 #1
0
def test_find_callable():
    assert fa.find([
        dict(label='pre 2016-01-01'),
        dict(label='post 2016-01-02'),
    ],
                   label=lambda val: val.startswith('post ')) == dict(
                       label='post 2016-01-02')
コード例 #2
0
def anatomical_warp_inputs(acquisitions, **kwargs):
    anatomical = fa.find(acquisitions, label='anatomical_mdeft')
    return dict(
        native=anatomical.find_file('*.nii.gz'),
        standard=D99.find_file('D99_template.nii.gz'),
        warp_target=D99.find_file('D99_atlas_1.2a.nii.gz'),
    )
コード例 #3
0
def dtiinit_inputs(acquisitions, **kwargs):
    diffusion = fa.find(acquisitions, label='DTI 2mm b1250 84dir(axial)')

    return dict(
        bvec=diffusion.find_file('*.bvec'),
        bval=diffusion.find_file('*.bval'),
        nifti=diffusion.find_file('*.nii.gz'),
    )
コード例 #4
0
def reactivity_inputs(acquisition_label, acquisitions, session, **kwargs):
    functional = fa.find_required_input_source(acquisitions, label=acquisition_label)
    # using plain find() here b/c this T1w might be missing
    structural = fa.find(acquisitions, label='T1w 1mm')
    if not structural:
        assert session['_id'] in second_to_first_visit_id,\
            'the only sessions that should be missing T1w are second visits. {} was missing a T1w'\
            .format(session['_id'])
        first_visit_session_id = second_to_first_visit_id[session['_id']]
        first_visit_acquisitions = client.request(
            'sessions/{}/acquisitions'.format(first_visit_session_id)).json()
        structural = fa.find(first_visit_acquisitions, label='T1w 1mm')
        assert structural, 'Session {} is missing a structural.'.format(session['_id'])

    return dict(
        functional=functional.find_file('*.nii.gz'),
        structural=structural.find_file('*.nii.gz'),
    )
コード例 #5
0
def dtiinit_inputs(acquisitions, **kwargs):
    diffusion = fa.find(acquisitions, label='Diffusion')

    return dict(
        bvec=diffusion.find_file('*1000.bvec'),
        bval=diffusion.find_file('*1000.bval'),
        dwi=diffusion.find_file('*1000.nii.gz'),
    ), dict(
        # Here you can add any configuration. So for instance to add robust tensor, do:
        # fitMethod='rt'
    )
コード例 #6
0
def afq_inputs(analyses, **kwargs):
    dtiinit = fa.find(analyses, label=dtiinit_label)

    return dict(dtiInit_Archive=dtiinit.find_file('dtiInit_*.zip'), )
コード例 #7
0
def test_find():
    assert fa.find([
        dict(label='pre'),
        dict(label='post'),
    ], label='post') == dict(label='post')
コード例 #8
0
from scitran_client import ScitranClient
import scitran_client.flywheel_analyzer as fa

client = ScitranClient('https://flywheel.scitran.stanford.edu')

with fa.installed_client(client):
    D99 = fa.find(client.request(
        'sessions/588bd1ac449f9800159305c2/acquisitions').json(),
                  label='atlas')


def anatomical_warp_inputs(acquisitions, **kwargs):
    anatomical = fa.find(acquisitions, label='anatomical_mdeft')
    return dict(
        native=anatomical.find_file('*.nii.gz'),
        standard=D99.find_file('D99_template.nii.gz'),
        warp_target=D99.find_file('D99_atlas_1.2a.nii.gz'),
    )


if __name__ == '__main__':
    with fa.installed_client(client):
        fa.run([
            fa.define_analysis('afni-brain-warp',
                               anatomical_warp_inputs,
                               label='anatomical warp'),
        ],
               project=fa.find_project(label='showdes'),
               max_workers=2)