def reinicio(): zera_pontos = '' pos2 = list((pygame.mouse.get_pos())) click_mouse = pygame.mouse.get_pressed() screen.blit(back, (0, 0)) screen.blit(reiniciar, (340, 185)) screen.blit(voltar, (340, 279)) #exibe a pontuacao da ultima partida pontuacao = open("pontos.txt", "r").read() font = pygame.font.Font("fonts/font2.ttf", 30) mensagem = font.render(pontuacao, True, (0, 0, 0)) screen.blit(mensagem, [450, 110]) if pos2[0] >= 281 and pos2[0] <= 437 and pos2[1] >= 187 and pos2[1] <= 269: if click_mouse[0] == 1: zera_pontos = open("pontos.txt", "w").write(str(0)) #zera a ultima pontuação script.main() sys.exit() if pos2[0] >= 282 and pos2[0] <= 438 and pos2[1] >= 282 and pos2[1] <= 368: if click_mouse[0] == 1: menu.main() sys.exit() pygame.display.flip()
def script(argv): # Save PEP 3122! if "." in __name__: from .script import main else: from script import main main(argv, version)
def do_script(self, message): if message.get('script'): with open('script.py', 'w') as f: f.write(message.get('script')) import script script.main() return None, None
def main(): script.main(fname="D.expr.gold.CLS.apr.19.tab") D = mio.load("D.expr.gold.CLS.apr.19.tab") CLS = all_pairs_bool_dist(D['M']) CHECK = mio.load("gold.R.dists.tab")['M'] print CLS print CHECK assert np.all(CLS == CHECK)
def main(): done = False pos2 = [] #posicao do mouse pygame.init() clock = pygame.time.Clock() screen = pygame.display.set_mode(wind_size) pygame.display.set_caption('Flying Bee') screen.blit(back, (0, 0)) screen.blit(btn_iniciar, (330, 140)) screen.blit(btn_ajuda, (325, 185)) screen.blit(btn_sobre, (320, 232)) screen.blit(btn_sair, (320, 275)) while not done: pos2 = list((pygame.mouse.get_pos())) click_mouse = pygame.mouse.get_pressed() #print pygame.mouse.get_pos() for event in pygame.event.get(): if event.type == pygame.QUIT: done = True screen.blit(back, (0, 0)) screen.blit(btn_iniciar, (330, 140)) screen.blit(btn_ajuda, (325, 185)) screen.blit(btn_sobre, (320, 232)) screen.blit(btn_sair, (320, 275)) if pos2[0] >= 365 and pos2[0] <= 483 and pos2[1] >= 146 and pos2[ 1] <= 171: if click_mouse[0] == 1: script.main() sys.exit() screen.blit(btn_iniciar_h, (330, 140)) if pos2[0] >= 372 and pos2[0] <= 475 and pos2[1] >= 195 and pos2[ 1] <= 216: screen.blit(btn_ajuda_h, (325, 185)) if click_mouse[0] == 1: tela.ajuda() if pos2[0] >= 373 and pos2[0] <= 472 and pos2[1] >= 240 and pos2[ 1] <= 273: screen.blit(btn_sobre_h, (320, 232)) if click_mouse[0] == 1: tela.sobre() if pos2[0] >= 387 and pos2[0] <= 451 and pos2[1] >= 286 and pos2[ 1] <= 308: if click_mouse[0] == 1: done = True #sai do jogo screen.blit(btn_sair_h, (320, 275)) pygame.display.flip() clock.tick(60) pygame.display.update() pygame.quit()
def do_script(self, message): if message.get('script'): with open('script.py', 'w') as f: f.write(message.get('script')) # noinspection PyUnresolvedReferences import script script.main() return None, None
def runScript(self): print("Running script") print("Imported files: ") for file in root.files: print(file) print("Destination Directory" + root.directory) script.main(root.files, root.directory) print("Script Complete")
def test_all(self): sys.argv = [ "", "--url", "http://kinox.to/Stream/The_Big_Bang_Theory.html", "--episode", "8", "2", "--count", "2", ] script.main()
def convert_to_df(url_list, image_list, title_list, date_list, companies_list, website_url_list, websites_list): data = pd.DataFrame({"Article": url_list, "Title": title_list, "Image": image_list, "Date": date_list, "Company": companies_list, "Website": websites_list, "Website url": website_url_list}) print(len(data)) abs_filename = "./Scraderlatestnews.csv" try: os.remove(abs_filename) except OSError: pass data.to_csv(abs_filename, encoding='utf-8') script.main() algorithm.run_algorithm(abs_filename)
async def lol_patch(ctx, version): # image = discord.File(main(version)) # await ctx.send(file=image) e = discord.Embed(title=f'Notas de la version {version}', color=discord.Color.blue()) img = main(version) e.set_image(url=img) await ctx.send(embed=e)
def main(self, *args, **kwargs): from script import main _kwargs = { "out": self.out, "err": self.err, } _kwargs.update(kwargs) return main(*args, **_kwargs)
def run_tests(): set_debug(True) ELLIPSIS = '…'.encode('utf-8') f_names = [ 'Plan for next-2', 'iOS-10-test-1', 'iOS-10-test-2', 'iOS-14-test-1', 'iOS-14-test-2', ] contents = [ b'Plan for next\n\nDo that, and...\n\nWork on this.', b'iOS-10-test-1\n\nNeed to get rid of items!\n\nit could be...', b'iOS-10-test-2\nline', b'iOS-14-test-1\n\nyou don\'t want to work in that context.', b'iOS-14-test-2\n\nMessage on board:\n\nI haven\'t used all' + ELLIPSIS, ] test_content(1, f_names[0], 15, 60, contents[0]) test_content(2, f_names[1], 15, 71, contents[1]) test_content(3, f_names[2], 10, 28, contents[2]) test_content(4, f_names[3], 15, 71, contents[3]) test_content(5, f_names[4], 15, 72, contents[4]) DIR_OUT = 'test-out' try: os.mkdir(DIR_OUT) except FileExistsError: pass main('test-data', DIR_OUT) test_file_out(6, os.path.join(DIR_OUT, f_names[0]), contents[0]) test_file_out(7, os.path.join(DIR_OUT, f_names[1]), contents[1]) test_file_out(8, os.path.join(DIR_OUT, f_names[2]), contents[2]) test_file_out(9, os.path.join(DIR_OUT, f_names[3]), contents[3]) test_file_out(10, os.path.join(DIR_OUT, f_names[4]), contents[4])
def main(): DCOR = script.main(fname=FNAME) COR = compute_all_ppc_numpy(M) SCI = compute_all_pcc_scipy(M) print np.all(np.abs(COR-SCI) < 0.0000000000001) DCOR = compute_all_dcor(M) DCORL = loop_dcor(M) print np.all(np.abs(DCOR-DCORL) < 0.0000000000001) DCOR2 = compute_all_dcor_2(M) print np.all(np.abs(DCOR-DCOR2) < 0.0000000000001) DCOR3 = compute_all_dcor_3(M) print np.all(np.abs(DCOR-DCOR3) < 0.0000000000001) print np.all(np.abs(DCOR-DCOR3) < 0.1) KUN = mio.load("kungold.tab")['M'] print KUN print "kun", np.all(np.abs(DCOR-KUN) < 0.001) print "kun", np.all(np.abs(DCORL-KUN) < 0.001) print DCOR[5,3], DCOR[3,5] print DCOR3[5,3], DCOR3[3,5]
def main(): DCOR = script.main(fname=FNAME) COR = compute_all_ppc_numpy(M) SCI = compute_all_pcc_scipy(M) print np.all(np.abs(COR - SCI) < 0.0000000000001) DCOR = compute_all_dcor(M) DCORL = loop_dcor(M) print np.all(np.abs(DCOR - DCORL) < 0.0000000000001) DCOR2 = compute_all_dcor_2(M) print np.all(np.abs(DCOR - DCOR2) < 0.0000000000001) DCOR3 = compute_all_dcor_3(M) print np.all(np.abs(DCOR - DCOR3) < 0.0000000000001) print np.all(np.abs(DCOR - DCOR3) < 0.1) KUN = mio.load("kungold.tab")['M'] print KUN print "kun", np.all(np.abs(DCOR - KUN) < 0.001) print "kun", np.all(np.abs(DCORL - KUN) < 0.001) print DCOR[5, 3], DCOR[3, 5] print DCOR3[5, 3], DCOR3[3, 5]
image_name, folder_name = line.strip().split( ',')[0].strip(), line.strip().split(',')[1].strip() file.write(image_name) folder_name = folder_name[len( 'https://github.com/ppc64le/build-scripts/tree/master/a/' ):] #print(folder_name) file.write("," + folder_name + "\n") with open('input.txt') as file: lines = file.readlines() with open('UpdatedImageList.csv', 'w') as file: for line in lines: ret = script.main(line, usernameStrGithub, passwordStrGithub) image_name, folder_name = line.strip().split(',') try: print(" Uploading README file.. ") push_file(image_name) print(" README file uploaded..") except Exception as e: print(e) print("error") file.write(image_name + "," + "authentication error\n") continue if ret == 'docker': file.write(image_name + "," + "docker error\n") elif ret == 'github':
def _script_b_fired(self): return script.main()
#!/usr/bin/env python3 import script script.main()
def hello_world(): return script.main()
def expr_func(random_seed, epochs, fine_tuning_epochs, batch_size, dropout, learning_rate, learning_rate_max_offset, threshold, max_vocab_size, max_seq_len, embed_size, n_folds, share, n_repeat, debug): set_seed(random_seed) print('seed: {}'.format(random_seed)) # TODO try 5*2 fold print_every_step = 500 train_df, _ = load_data(debug=debug) train_df, test_df = train_test_split(train_df, test_size=356000) targets_te = test_df['target'] scores_te = [] scores_va = [] for n in range(n_repeat): if n_folds > 1: predictions_te_h, predictions_te, scores, thresholds, coeffs = cv( train_df, test_df, n_folds=n_folds, epochs=epochs, batch_size=batch_size, learning_rate=learning_rate, threshold=threshold, max_vocab_size=max_vocab_size, embed_size=embed_size, print_every_step=print_every_step, share=share, dropout=dropout, learning_rate_max_offset=learning_rate_max_offset, fine_tuning_epochs=fine_tuning_epochs, max_seq_len=max_seq_len) print(coeffs) threshold_e = np.array(thresholds).mean() best_score = -1 for t in np.arange(0, 1, 0.01): score = f1_score(targets_te, predictions_te > t) if score > best_score: best_score = score best_threshold = t print('best threshold on test set: {:.2f} score {:.4f}'. format(best_threshold, best_score)) print('estimated {:.4f} 1 of hard {:.4f} 0.31 hard {:.4f}'.format( f1_score(targets_te, predictions_te > threshold_e), f1_score(targets_te, predictions_te_h > 1), f1_score(targets_te, predictions_te > 0.31))) scores_te.append([ f1_score(targets_te, predictions_te > threshold_e), roc_auc_score(targets_te, predictions_te), precision_score(targets_te, predictions_te > threshold_e), recall_score(targets_te, predictions_te > threshold_e) ]) scores_va.extend(scores) else: train_df, valid_df = train_test_split(train_df, test_size=0.02) train_df = train_df.reset_index(drop=True) valid_df = valid_df.reset_index(drop=True) predictions_te, predictions_va, targets_va, best_threshold = main( train_df, valid_df, test_df, epochs=epochs, batch_size=batch_size, learning_rate=learning_rate, threshold=threshold, max_vocab_size=max_vocab_size, embed_size=embed_size, print_every_step=print_every_step, dropout=dropout, learning_rate_max_offset=learning_rate_max_offset, fine_tuning_epochs=fine_tuning_epochs, max_seq_len=max_seq_len) scores_va.append([ f1_score(targets_va, predictions_va > threshold), roc_auc_score(targets_va, predictions_va), precision_score(targets_va, predictions_va > threshold), recall_score(targets_va, predictions_va > threshold) ]) scores_te.append([ f1_score(targets_te, predictions_te > best_threshold), roc_auc_score(targets_te, predictions_te), precision_score(targets_te, predictions_te > best_threshold), recall_score(targets_te, predictions_te > best_threshold) ]) if len(scores_te) == 1: scores_te = scores_te[0] if len(scores_va) == 1: scores_va = scores_va[0] return {'scores_te': scores_te, 'scores_va': scores_va}
def exec_py(): return (script.main())
import wow.register from script import main main()
import argument_parser import my_utils import script import time opt = argument_parser.parser() my_utils.plant_seeds(randomized_seed=opt.randomize) import trainer trainer = trainer.Trainer(opt) trainer.build_dataset_train() trainer.build_dataset_test() trainer.build_network() trainer.build_optimizer() trainer.build_losses() trainer.start_train_time = time.time() for epoch in range(opt.nepoch): trainer.train_epoch() trainer.test_epoch() trainer.dump_stats() trainer.save_network() trainer.increment_epoch() trainer.save_new_experiments_results() script.main(opt, trainer.network) #Inference opt.faust = "INTRA" script.main(opt, trainer.network) #Inference
[x + 1, y + Inc.FootH - 1], \ [x + Inc.FootW - 1, y + Inc.FootH - 1] \ ]) if map.canMove(lstRpgXY): player1.moveDown() if player1.y - map.viewY > Inc.ScreenH / 2: map.moveView(0, -Inc.moveStepPix) map.raiseEventAuto(lstRpgXY, 0) else: player1.stop() return False def Action(player1, map): player1.setDirection(Player.Up) x, y = player1.getNextPos() lstRpgXY = map.getRpgXy([ \ [x + 1, y + 1], \ [x + Inc.FootW, y + 2] \ ]) map.raiseEventAuto(lstRpgXY, 0) if __name__ == '__main__': try: import script script.main() except: import traceback traceback.print_exc(file=file('trace.txt', 'w'))
import sys import os if len(sys.argv) < 2: print 'There was no app specified' exit() app_name = sys.argv[1] sys.path.append('psplibs-pygame_mockup') sys.path.append(app_name) from script import main main()
T1 = 50 T2 = 14 sample_per_step = 100 timer_throw_Methode1 = [] timer_count_Methode1 = [] timer_total_Methode1 = [] timer_throw_Methode2 = [] timer_count_Methode2 = [] timer_total_Methode2 = [] timer_throw_Methode3 = [] timer_count_Methode3 = [] timer_total_Methode3 = [] for i in range(1, N + 1): timer = script.main(i * sample_per_step, T1, T2) timer_throw_Methode1.append(timer[0][0]) timer_count_Methode1.append(timer[0][1]) timer_total_Methode1.append(timer[0][2]) timer_throw_Methode2.append(timer[1][0]) timer_count_Methode2.append(timer[1][1]) timer_total_Methode2.append(timer[1][2]) timer_throw_Methode3.append(timer[2][0]) timer_count_Methode3.append(timer[2][1]) timer_total_Methode3.append(timer[2][2]) ind = np.arange(N) # the x locations for the groups width = 0.25 # the width of the bars space = 0.05 fig, ax = plt.subplots()
from script import main import asyncio if __name__ == '__main__': username = input('Введите вашу Gmail почту: ') password = input('Введите пароль вашей почты: ') asyncio.run(main('contacts.db', username, password))
def test_main(): a = 2 assert a+1 == main(a)
def test_main(): create_zipfile() sc.main('.') delete_zipfile()